Регулирование напряжения трансформатора
Регулирование напряжения трансформатора
Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.
Большинство силовых трансформаторов [1] оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.
Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.
Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора.
Содержание
Применение [ править | править код ]
В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа витков обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так как
U 2 = U 1 w 2 w 1
В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.
Переключение без возбуждения [ править | править код ]
Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформации в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторах средней и большой мощности с помощью четырёх ответвлений по 2,5 % на каждое [2] .
Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом, ввиду большего количества витков, отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, на стороне высшего напряжения величина силы тока меньше, и переключатель получается более компактным [3] . При этом надо заметить, что у понижающих трансформаторов (питание подводится со стороны обмотки высшего напряжения) регулирование напряжения будет сопровождаться изменением магнитного потока в магнитопроводе. В нормальном режиме это изменение незначительно.
Регулирование напряжения переключением числа витков обмотки со стороны питания и со стороны нагрузки имеет разнохарактерный вид: при регулировании напряжения изменением числа витков на стороне нагрузки для повышения напряжения необходимо увеличить число витков (поскольку напряжение пропорционально числу витков), но при регулировании со стороны питания для повышения напряжения на нагрузке необходимо уменьшить число витков (это связано с тем, что напряжение сети уравновешивается ЭДС первичной обмотки, и для уменьшения последней необходимо уменьшить число витков).
При переключении ответвлений обмотки с отключением трансформатора, переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки [3] .
Переключатели числа витков без возбуждения [ править | править код ]
Переключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при отключенном трансформаторе. Именно этот тип переключателя имеет второе, жаргонное название — «анцапфа» (нем. Anzapfen — отводить, отбирать) [4] .
Для уменьшения и стабильности переходного сопротивления контактов на них поддерживается давление с помощью специального пружинного приспособления, которое при определённых ситуациях может вызывать вибрацию. Если переключатель числа витков без возбуждения находится в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с окислением материала в точке контакта (поскольку в качестве материала контакта чаще применяется медь или сплавы на её основе (латунь), окислы которых имеют достаточно высокое электрическое сопротивление и химическую стойкость) и постепенным разогревом контакта, который приводит к разложению масла и осаждению пиролитического углерода на контактах, что ещё более увеличивает контактное сопротивление и снижает степень охлаждения, приводя к местным перегревам. Данный процесс может происходить лавинообразно. В конечном итоге наступает неконтролируемая ситуация, приводящая к срабатыванию газовой защиты (из-за газов, появляющихся при разложения масла в точках местных перегревов) или даже к поверхностному пробою по осевшим на изоляции твёрдым продуктам разложения масла. Персонал предприятия,обслуживающий трансформаторы, оборудованные переключателем коэффициентом трансформации ПБВ (переключатель без возбуждения), должен не менее чем 2 раза в год перед наступлением зимнего максимума нагрузки и летнего минимума нагрузки произвести проверку правильности установки коэффициента трансформации [5] . При этом необходимо, чтобы переключение числа витков проводилась в отключенном от сети состоянии, с переводом переключателя во все положения — данный цикл должен быть повторен несколько раз для удаления окисных плёнок с поверхности контактов и возвратом его обратно в заданное положение [6] . Для контроля качества контактов производится измерение сопротивления обмоток постоянному току. «Трансформаторы силовые транспортирование, разгрузка, хранение, монтаж и ввод в эксплуатацию СПО и И Союзтехэнерго, Москва» 1981г. Вышеуказанные операции проводятся также если трансформатор был отключён в течение большого промежутка времени и вновь вводится в эксплуатацию.
Регулирование под нагрузкой [ править | править код ]
Данный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле. Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления. Уже в 1905—1920 годах были разработаны устройства для регулирования напряжения на трансформаторах под нагрузкой (РПН). Принцип регулирования напряжения таких устройств также основан на изменении числа витков. Сложность выполнения таких устройств заключается:
- в невозможности простого разрыва цепи при изменении числа витков, как это делается в ПБВ (это связано с возникновением электрической дуги большой мощности и больших перенапряжений из-за действия ЭДС индукции) что приведёт к выходу из строя трансформатора;
- использовании кратковременных (на время переключения ступени напряжения) замыканий части витков обмоток.
Для ограничения тока в короткозамкнутых обмотках необходимо использовать токоограничивающие сопротивления. В качестве токоограничивающего сопротивления используются индуктивности (реакторы) и резисторы.
РПН с токоограничивающими реакторами [ править | править код ]
Каждая ступень РПН с токоограничивающим реактором состоит из двух контакторов и одного реактора. При этом реактор состоит из двух обмоток, к каждой из них подключены контакторы. В нормальном режиме оба контактора замыкают один и тот же контакт и через эти оба параллельно включённых контактора и реактор проходит ток обмотки. Во время операции переключения один из контакторов переключается на другой контакт (соответствующий необходимой ступени регулирования). При этом часть обмотки трансформатора замыкается накоротко — ток в этой цепи ограничивается реактором. Далее на этот же контакт переводится другой контактор, переводя трансформатор на другую ступень регулирования — на этом операция регулирования заканчивается.
РПН с токоограничивающими резисторами [ править | править код ]
Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янсена (Janssen) по имени изобретателя. Принцип Янсена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор.
Применение реактора является альтернативой принципу Янсена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части.
В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это служит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке.
С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной.
Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания.
В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном.
Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора.
Автоматическое регулирование напряжения [ править | править код ]
Переключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в линиях, соединённых с трансформатором. Совсем необязательно, что целью всегда будет поддержание постоянного вторичного напряжения на трансформаторе. Чаще всего падения напряжения происходят во внешней сети — особенно это проявляется для дальних и мощных нагрузок. Для поддержания номинального напряжения на дальних потребителях может потребоваться увеличение напряжения на вторичной обмотке трансформатора. Система управления РПН относится к релейной защите и автоматике станции — переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычно функции согласования коэффициентов трансформации между различными трансформаторами внутри одной и той же станции относятся к системе РПН. При соединении трансформаторов в параллель их переключатели числа витков должны двигаться синхронно. Для этого один из трансформаторов выбирается ведущим, а другие — как ведомыми, их системы управления РПН следят за изменением коэффициента трансформатора ведущего трансформатора. Обычно синхронным переключением числа витков добиваются исключения токов циркуляции между обмотками параллельных трансформаторов (из-за разницы вторичных напряжений параллельных трансформаторов) хотя на практике в момент действия РПН циркуляционные токи всё же возникают из-за рассогласования при переключении, однако это допускается в определённых пределах.
Последовательные регулировочные трансформаторы (Вольтодобавочные трансформаторы) [ править | править код ]
Для регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы (вольтодобавочные), которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже.
Регулирование напряжения в энергосистеме
Регулирование напряжения – его намеренное изменение в целях технически допустимых условий работы системы электроснабжения или увеличения ее экономичности.
Задача регулирования напряжения — обеспечение нормальных технических условий и экономичности совместной работы электросетей и производственных механизмов. В сети каждой ступени трансформации напряжения, оно должно быть в соответствующих пределах.
Напряжение сети постоянно меняется вместе с изменением нагрузки, режима работы источника питания, сопротивления цепи. Отклонения напряжения не всегда находятся в интервалах допустимых значений.
Причинами этого являются:
а) потери напряжения, вызываемые токами нагрузки (изменение активной мощности от минимального до максимального значения вызывает большие изменения потерь напряжения во времени),
б) неправильный выбор сечений токоведущих элементов и мощности силовых трансформаторов,
в) неправильно построенные схемы сетей.
Регулирование напряжения дает проведение следующих мероприятий:
1. Выбор средств регулирования, регулировочных диапазонов ступеней регулирования;
2. Выбор мощности и места установки регулирующих устройств в сети;
3. Выбор системы автоматического регулирования.
При этом надо выполнять технические требования и выбирать экономически выгодное решение. Задача регулирования напряжения обеспечивается регулирующими и компенсирующими устройствами.
Вопросы регулирования напряжения должны решаться с вопросами баланса и распределения реактивной мощности, выбора компенсирующих устройств, повышения, повышения КПД сети в целом.
Для выполнения требований к режиму напряжения надо:
1. Централизованное изменение режима напряжения в пунктах питания распределительных сетей. Изменение режима напряжения единовременное мероприятие на длительный период времени (для распределительных сетей). Для изменения напряжения используют ПБВ (переключатели без возбуждения тpaнcфopмaтopa), установки с продольной компенсацией. Режим при этом улучшается, но закон изменения напряжения вынужденный.
2. Регулирование потерь напряжения в отдельных или нескольких элементах сети (линиях, участках), то есть изменение напряжения по желаемому закону (лучше автоматическое). Закон подбирается с учетом условий изменения нагрузки.
3. Изменение или регулирование коэффициента трансформации линейного регулятора, трансформатора между центром питания и электроприемниками, то есть в распределительных сетях. Регулировочные устройства должны дать величину напряжения по модулю в пределах стандарта.
Регулирование напряжения в распределительных сетях
Экономичность режима напряжения в распределительных сетях определяется работой потребителей, а в питающих сетях — потерями мощности в сети. Связь между сетями обеспечивается трансформатором с регулированием под нагрузкой. Это основное средство в общей системе регулирования в электрической системе со многими ступенями трансформации в сетях.
Регулирование напряжения в распределительных сетях тесно связано с регулированием напряжения в питающих сетях, так как регулирование напряжения в центре питания влияет на отклонение напряжения в приемниках. Таким образом, регулирование напряжения в центре питания надо согласовывать с изменением потерь напряжения на участках сети.
Повышение экономичности распределительных сетей связано с увеличением требований к условиям регулирования напряжения. Ступени регулирования ответвлений трансформаторов обычно понижается с 5% до 2,5% от Uн для достижения экономичности. К распределительным сетям обычно подключены разнохарактерные нагрузки.
Централизованное регулирование напряжения в центре питания не дает желаемый режим напряжений в распределительной сети. Для определения экономичности наивыгоднейшего регулирования напряжения в пункте питания используется интегральный критерий качества напряжения. При этом применяется местное регулирование напряжения, т.е. регулирование для одной группы потребителей или приемников энергии. Решаются вопросы:
1. выбора типа регулирующих устройств и мест их локализации;
2. выбор диапазонов и ступеней регулирования трансформаторов.
Выбор распределительных трансформаторов с РПН (регулирование под нагрузкой) приводит к удорожанию сети.
В качестве средств местного регулирования напряжения могут применяться синхронные двигатели, управляемые батареи конденсаторов, синхронные компенсаторы. Компенсирующие устройства используются для увеличения экономичности сети и улучшения режима напряжения.
Иногда экономически выгодна установка дополнительных компенсирующих устройств, так как для регулирования напряжения надо иметь в энергосистеме резерв реактивной мощности.
Проектирование распределительных электрических сетей должно проводиться с выбором способов регулирования напряжения при сочетании централизованного и местного регулирования и использования компенсирующих устройств в местных сетях.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Автоматическое регулирование возбуждения (АРВ), напряжения и реактивной мощности
Автоматическое регулирование возбуждения производится на синхронных машинах к которым относятся генераторы, двигателя обладающие высоким значением мощности и для синхронных компенсирующих устройств, используются для машин постоянного тока и в устройствах где может быть выполнено регулировка напряжения непосредственно на токосъемных кольцах обмотки возбуждения.
Главное предназначение АРВ заключается в поддержке неизменной величины напряжения в электросети на заданном уровне и для равномерного распределения реактивной мощности среди конденсаторных и тиристорно-конденсаторных батарей, являющихся источниками реактивной мощности. Для демпфирования колебаний по всем параметрам при переходе от аварийного режима к нормальному режиму работы электросети
При выполнении действия АРВ изменению подвергаются ток возбуждения машины, величина магнитного потока и ЭДС непосредственно в якорных обмотках.
Регулирование возбуждения в синхронных генераторах проводится с целью сохранения постоянного и устойчивого значения напряжения в сетях напряжения и для обеспечения параллельной работы устройств.
Машины постоянного тока регулируются для создания постоянного, устойчивой величины частоты вращения рабочей части оборудования, при влиянии на значение тока возбуждения оборудования.
АРВ различается по признаку действия:
- Пропорциональное действие — зависит от изменения значения величины тока возбуждения относительно изменению напряжения на контактах оборудования от предусмотренного параметра.
- Сильное действие, оборудование с таким регулированием применяется в случаях присутствия резкопеременых мощностей после чего появляется высокое колебание значения напряжения. В результате АРВ сильного действия происходит регулирование по производным всех параметров как-то: сила тока, напряжение, частота и так. далее. АРВ сильного действия способствует передаче больших мощностей по высоковольтным линиям на большие расстояния.
Пункт автоматического регулирования напряжения (ПАРН)
Устройство ПАРН рекомендуется применять в условиях сложной эксплуатации высоковольтных электрических линий 6 – 10 кВ трехфазной сети умеренного и сурового климата в котором господствуют: сильный ветер и гололед с интенсивным оледенением проводов, а также при высокой снеговой нагрузке до 250 кгс/м 2 .
Высокая протяженность воздушных линий электропередач, отражающаяся на качественных показателях электрической энергии и интенсивное присоединение новых электроприемников требует повышения пропускной способности воздушных линий, для решения этой проблемы используется пункт автоматического регулирования напряжения, работающий с применением вольтодобавочных трансформаторов.
Рис №1. Равномерное распределение нагрузок по всей протяженности воздушной линии электропередач: а. при присоединении дополнительных потребителей, б. при подключении ПАРН
Использование ПАРМ способствует улучшению показателей качества электрической энергии,а также избавление от несимметрии напряжения в сети.
Для использования в холодных северных районах в конструкции предусмотрено наличие устройства контропирующего температурный режим, который осуществляет блокировку переключения ступеней при значении температуры, при которой происходит «замерзание», загустение трансформаторного масла.
Для холодных районов ПАРН поставляется в блок-боксе с защитным утеплителем.
Блок автоматического регулирования напряжения (БАРН)
Устройство используется для регулировки высоковольтного напряжения 6 – 10 кВ в трехфазных электрических сетях с любым видом заземляющей нейтрали и может применяться для любых типов распределительных устройств подстанций, в том числе для установки в местах критического падения напряжения.
БАРН способствует повышению пропускной способности как новых, так и уже существующих воздушных линий. Наличие такого оборудования благоприятно сказывается на передаче электроэнергии на большие расстояния и устраняет асимметрию напряжения в электросетях.
Рис №2. Вольтодобавочный автрансформатор используемый в комплектации БАРН, оборудованный 32-ступенчатой регулировкой напряжения
Принцип работы БАРН происходит за счет геометрического сложения напряжений обмоток. Изменение параметров напряжения происходит при изменении полярности последовательной обмотки, при повышении напряжения полярность меняется, при понижении полярность последовательной и основной обмоток совпадает. Регулировка осуществляется электроникой в шкафу управления, которая подает команду электроприводу, перемещающему переключатель в заданное положение.
Рис №3. Электрическая схема БАРН
Автоматическое регулирование возбуждения генератора
АРВ осуществляется для изменения напряжения и тока в роторе,с целью сохранить напряжение в статоре на заданном уровне. При этом регулирование может осуществляться быстро, сверх номинального значения, такое действие называется форсировкой возбуждения.
Те значения параметров тока и напряжения, которые являются наибольшими в возбудителе называются потолком возбуждения. Отношения напряжения или тока в роторе при форсировке к номинальным значениям определяются как кратность форсировки возбудителя.
Автоматическое регулирование возбуждения выполняет следующие функции:
Электрические станции, подстанции, линии и сети — Основные способы и средства регулирования напряжения
Регулирование напряжения на генераторах электрических станций.
Регулирование напряжения на генераторах станций выполняют в зависимости от нагрузки потребителей. При увеличении нагрузки напряжение генераторов стараются повысить, а при ее снижении — понизить. Такое, согласованное с изменением нагрузки, регулирование напряжения называется встречным регулированием напряжения.
Встречное регулирование напряжения выполняют с целью скомпенсировать потери напряжения в сети и приблизить уровни напряжения у потребителей к номинальным. На небольших электрических станциях районного или межрайонного значения встречное регулирование осуществляют вручную или автоматически, в зависимости от графика нагрузки потребителей. Допустимые пределы изменения напряжения на генераторах составляют ± 5% от номинального. При более глубоком регулировании мощность генератора должна быть снижена.
При питании потребителей электроэнергии, подключенных непосредственно к шинам станции, диапазоны регулирования обычно уменьшаются до значений ± 2,5% Uном.
Для компенсации потерь напряжения в отходящих линиях, присоединенных непосредственно к шинам электростанции, таких ограниченных диапазонов регулирования бывает недостаточно. Кроме того, различие в графиках нагрузки отдельных групп потребителей не позволяет сохранить качество напряжения у всех потребителей сети в пределах технически допустимых значений, даже при встречном регулировании напряжения. Поэтому регулирование напряжения на генераторах не может решить вопроса сохранения качества напряжения и применяется как вспомогательное для улучшения общего уровня напряжения в сетях.
Основным методом регулирования напряжения в начале сети является централизованное регулирование на питающих подстанциях или в центрах (пунктах) питания распределительных линий. Это регулирование осуществляется специальными трансформаторами со встроенным регулированием напряжения под нагрузкой (трансформаторы с РПН) или на более крупных подстанциях вольтодобавочными трансформаторами.
Эти методы регулирования напряжения рассматриваются ниже.
Регулирование напряжения на силовых трансформаторах.
Регулирование напряжения на трансформаторах может быть выполнено как с помощью переключения ответвлений их обмоток без возбуждения (ПБВ), т. е. при отключенном от сети трансформаторе, так и переключен и ем ответвлений под нагрузкой (РПН). Каждый понижающий трансформатор снабжен переключателем, к которому подводятся ответвления обмотки высшего напряжения, выполненные для случая ПБВ в пределах± 5% или ±2X2,5%. Таким образом, переключатели ПБВ обеспечивают общий диапазон регулирования в пределах 10%, который можно изменить, предварительно отключив трансформатор от сети.
В устройствах РПН применяются специальные переключатели, обеспечивающие переключение ответвлений обмотки трансформатора при его работе под нагрузкой, т. е. без предварительного отключения трансформатора. Изменение коэффициента трансформации таких трансформаторов осуществляется, как правило, автоматически, от реле напряжения, воздействующего на привод переключающего устройства. Диапазоны регулирования напряжения для таких трансформаторов (их называют регулируемыми) приняты более широкими — в размере 10—15% ступенями по 1,5—2,5% каждая.
В настоящее время электропромышленность выпускает регулируемые трансформаторы в широком диапазоне мощностей и напряжений (см. приложение 2 и 3). Такие трансформаторы обычно имеют обозначение ТМН (трансформаторы с естественным масляным охлаждением, регулированием напряжения под нагрузкой) в отличие от трансформаторов типа ТМ с переключателями ПБВ. Переключатели РПН располагают в обмотках высшего напряжения для облегчения переключающей аппаратуры. Они помещены или в отдельные кожухи, наполненные маслом (у трансформаторов средних и крупных мощностей), пли в общем баке трансформатора для малых мощностей. Схемы переключателей обеспечивают переход подвижных контактов с одного ответвления обмотки на другое в строгой последовательности, исключающей разрыв тока нагрузки, позволяющей выполнить переключение без предварительного отключения трансформаторов от сети.
Рис. 154. Принципиальные схемы обмоток регулируемых трансформаторов.
а — напряжением 10/04 кВ, б — напряжением 35/10 кВ
На рис. 154 показаны принципиальные схемы обмоток регулируемых трансформаторов, снабженных переключателями РПН. Схема (рис. 154, а) применена для трансформаторов 10/04 кВ мощностью до 400 кВА, переключатель имеет шесть ступеней регулировки (две в сторону уменьшения и четыре в сторону увеличения напряжения, размером по 2,5% каждая). Главный подвижный контакт переключателя 1 связан с вспомогательным контактом 2, в цепи которого установлено токоограничивающее сопротивление. Оно ограничивает величину тока короткозамкнутой секции витков обмотки при нахождении контактов 1 и 2 на разных ответвлениях в процессе перехода с одного ответвления на другое. В рабочем положении оба контакта находятся на одном ответвлении, и ток нагрузки проходит через основной контакт 1.
На рис. 154, б показана принципиальная схема регулировочной части обмотки РО трансформатора 35/10 кВ с переключателем, обеспечивающим регулирование напряжения в пределах ±4 X 2,5% (т. е. ± 10%). В качестве токоограничивающего сопротивления использован реактор Р, рассчитанный на более длительное протекание тока при переключении со ступени на степень. Подвижные контакты ПК в рабочем положении так же, как и в предыдущей схеме, установлены на каком-либо одном ответвлении регулировки.
При переключениях с одного ответвления на другое строго соблюдается очередность движения контактов переключателя, при которой цепь предыдущего ответвления размыкается только после предварительного замыкания цепи последующего ответвления, благодаря чему не происходит разрыва цепи тока нагрузки.
Рис. 155. Регулируемый трансформатор типа ТМН мощностью 1000—1600 кВ А, напряжением 35/11 кВ: 1 — бак трансформатора, 2 — бак контактора, 3 — редуктор 4 — вал, 5 — приводной механизм
Рис. 156. Схема включения в сеть (а) и соединения обмоток (б) вольтодобавочного автотрансформатора типа ЛТМ
Перемещение подвижных контактов переключателей регулируемых трансформаторов осуществляется электродвигательным приводным механизмом, а также может быть выполнено вручную. На рис. 155 показан регулируемый трансформатор типа ТМН, мощностью 1000— 1600 кВА, напряжением 35/11 кВ. В баке трансформатора 1 размещена выемная часть с обмотками и переключателем ответвлений, в баке 2 — контактор переключателя с токоограничивающими сопротивлениями. Через редуктор 3 и вал 4 контактор переключателя связан с приводным механизмом 5, снабженным съемной рукояткой для ручного привода. В остальном трансформатор типа ТМН мало отличается от конструкции обычного трансформатора типа ТМ.
Применение вольтодобавочных автотрансформаторов.
Для регулирования напряжения в линиях применяют линейные или сетевые регуляторы напряжения. В качестве таких регуляторов в сельских сетях используют вольтодобавочные автотрансформаторы типа ЛТМ мощностью 400 и 630 кВА. Их включают последовательно в тех участках сети, где требуется повысить (или понизить) напряжение для группы подстанций потребителей, присоединенных к этому участку. Схемы включения трехфазного автотрансформатора типа ЛТМ на шесть ступеней регулирования показаны на рис. 156. Автотрансформаторы оборудованы устройством автоматического регулирования напряжения под нагрузкой в пределах +5 и — 10% от номинального напряжения линии ступенями по 2,5%.
Кроме силовой обмотки высшего напряжения 1 с регулировочной обмоткой 3 автотрансформатор имеет обмотку низкого напряжения 2 (см. рис. 156) для питания схемы автоматики.
Переключатель ответвлений расположен внутри бака автотрансформатора над магнитопроводом. Приводной механизм, состоящий из промежуточного редуктора и приводного электродвигателя, размещен на стенке бака снаружи. Приводной механизм оборудован конечными выключателями, размыкающими цепь питания приводного электродвигателя при достижении контактами переключателя крайних положений.
Устройство автоматического управления помещено в отдельном шкафу, который может размещаться как в непосредственной близости, так и на некотором расстоянии (до 5 м) от автотрансформатора. Питание шкафа автоматики осуществляется от обмотки низкого напряжения при помощи специального шлангового кабеля со штепсельным разъемом.
Рис. 157. Схема последовательного включения конденсаторов в линию
Вольтодобавочные автотрансформаторы имеют шесть линейных выводов высокого напряжения: А1В1С1 — входные и А2В2С2— выходные. Выводы вспомогательной обмотки низшего напряжения для питания шкафа автоматики расположены на стенке бака автотрансформатора.
Применение вольтодобавочных автотрансформаторов помогает обеспечить технически допустимые пределы по отклонениям напряжения у потребителей и облегчает условия эксплуатации всей сети в целом.
Использование конденсаторов, включенных последовательно.
Последовательное включение в линию конденсаторов позволяет резко снизить индуктивное сопротивление проводов линии и уменьшить потерю напряжения в ней. Поэтому установки последовательно включенных конденсаторов (сокращенно УПК) применяют для улучшения режимов напряжения в сетях. Схема включения УПК показана на рис. 157. В цепь, состоящую из активного rл и реактивного хл сопротивлений линии, включают последовательно емкостное сопротивление конденсатора хк. Общее реактивное сопротивление цепи будет равно их разности, т. е. хобщ = хл — хк.
Таким образом, за счет введения в цепь емкостного сопротивления общее реактивное сопротивление линии уменьшается, а напряжение повышается. Уменьшение потери напряжения зависит от величины коэффициента мощности нагрузки: чем ниже коэффициент мощности, тем эффективнее применение конденсаторов. Надбавка напряжения, создаваемая конденсаторами, зависит также от величины тока нагрузки и тем выше, чем больше ток. Поэтому с ростом нагрузки эффект компенсации потери напряжения возрастает.
Особенно эффективно применение последовательно включенных конденсаторов в линиях с резкопеременной нагрузкой. В частности, успешно компенсируются потери напряжения при запусках крупных электродвигателей, когда имеет место большой пусковой ток с низким коэффициентом мощности. При установке конденсаторов обеспечивается мгновенное изменение напряжения, что предотвращает и мигание ламп освещения при колебаниях нагрузки. Таким образом, при наличии последовательно включенных конденсаторов питание силовых и осветительных нагрузок может быть выполнено совместно.
Установки последовательно включенных конденсаторов применяют в распределительных сетях напряжением 6—35 кВ. Конденсаторы обладают хорошей перегрузочной способностью. Однако при сквозных коротких замыканиях в линии на их зажимах могут возникнуть значительные по величине перенапряжения. Поэтому их приходится защищать искровыми промежутками или шунтировать специальными контакторами (см. рис. 157).
Устанавливают конденсаторы обычно в конце радиальной воздушной линии, так как при этом уровни напряжения в ней ниже и конденсаторы меньше будут подвержены перенапряжениям, так как большинство коротких замыканий будет до них, а не за ними (ток короткого замыкания при этом через конденсаторы проходить не будет).
Выбирают конденсаторы по рабочему току линии, независимо от номинального напряжения в сети. Их соединяют в батареи отдельными группами и надежно изолируют от земли.
Автоматическое регулирование напряжения и реактивной мощности генераторов
Электрические системы на современных судах в общем случае объединяют несколько разнотипных генераторов и большое количество различных по мощности и назначению потребителей электроэнергии.
Многие из судовых потребителей нуждаются в бесперебойном питании и снабжении электроэнергией высокого качества, которое в установках постоянного тока определяется постоянством напряжения, а в установках переменного тока — постоянством напряжения и частоты.
По сравнению с береговыми установками мощность судовой электростанции невелика и отдельные потребители электроэнергии соизмеримы по мощности с генераторами судовой электростанции. Кроме того, судовые электроэнергетические системы отличаются резким изменением нагрузки в различных режимах эксплуатации судна, частыми включениями и отключениями потребителей, что ведет к колебаниям напряжения и частоты судовой электрической сети. Однако для обеспечения нормальной работы потребителей электроэнергии напряжение не должно изменяться свыше допустимых пределов во всех режимах работы электроэнергетической системы.
В установках постоянного тока простейшим и наиболее распространенным способом поддержания постоянства напряжения в сети является компаундирование генераторов, т. е. использование последовательной обмотки возбуждения, включаемой согласно с обмоткой параллельного или независимого возбуждения. При увеличении тока нагрузки генератора намагничивающая сила этой обмотки возрастает и таким образом компенсирует размагничивающее действие реакции якоря и падение напряжения в сопротивлениях якорной цепи.
Кроме регулирования напряжения последовательная обмотка в генераторах се смешанным возбуждением обеспечивает также форсировку возбуждения, т. е. быстрое восстановление напряжения генератора после короткого замыкания или наброса значительной по величине нагрузки.
При необходимости более точного поддержания постоянства напряжения в сети постоянного тока применяют автоматические системы регулирования, действующие по отклонению напряжения и использующие для питания цепей возбуждения генератора электромашинные усилители ЭМУ , магнитные усилители МУ и полупроводниковые устройства.
Основными причинами изменения напряжения синхронных генераторов являются размагничивающее действие реакции статора и индуктивное падение напряжения, которые возникают при изменениях нагрузки (особенно при пуске асинхронных двигателей большой мощности, соизмеримой с мощностью генераторов), а также при всяком изменении значения коэффициента мощности (cos<p) и частоты вращения первичных двигателей. При отсутствии автоматических регуляторов напряжения это изменение может вызвать опрокидывание или отключение от сети асинхронных двигателей, которые являются наиболее распространенными и довольно чувствительными к изменению напряжения судовыми потребителями электроэнергии.
Поэтому Правилами Регистра СССР предусматривается обязательное применение системы автоматического регулирования напряжения ( АРН ) судовых генераторов.
Кроме того, автоматические регуляторы напряжения (как и в установках постоянного тока) осуществляют форсировку возбуждения синхронных генераторов при аварийных снижениях напряжения в судовой электроэнергетической системе. Это повышает устойчивость параллельной работы генераторных агрегатов, ускоряет восстановление поминального значения напряжения и увеличивает предел мощности, передаваемой генераторами в судовую сеть.
Основой разработки и выбора системы АРН являются требования в отношении качества регулирования, эксплуатационных и других показателей работы, основными из которых являются:
1) время первого достижения номинального напряжения при набросе нагрузки;
2) характер изменения напряжения до достижения установившегося значения;
3) длительность переходного процесса;
4) статическая ошибка, определяемая разностью напряжений холостого хода и при номинальной нагрузке в установившемся режиме;
5) срок службы и надежность действия системы;
6) простота и удобство обслуживания;
7) масса и габариты.
По принципу работы различают три вида систем АРН : с регулированием по отклонению напряжения генератора; с регулированием по возмущению (по нагрузке) и с комбинированным регулированием— по отклонению напряжения и возмущению.
Регулирование по отклонению напряжения осуществляется системой АРН с применением угольных регуляторов напряжения ( РУН ), которые имеют значительное распространение на эксплуатируемых судах и совершенно не устанавливаются на вновь строящихся.
Это объясняется их недостатками, которые заключаются в следующем:
а) угольные сопротивления разрушаются при вибрации и сотрясениях судна, в результате чего регуляторы не могут обеспечивать надежной работы установки;
б) РУН характеризуются недостаточным быстродействием и большой зоной нечувствительности;
в) регуляторы не могут обеспечить необходимой форсировки возбуждения, так как сопротивление угольных столбиков даже при полном сжатии имеет значительную величину.
Системы АРН с регулированием по возмущению называются системами компаундирования. Принцип компаундирования заключается в том, что увеличение тока нагрузки генератора преобразуется в сигнал усиления его возбуждения. В отличие от машин постоянного тока компаундирование для синхронных генераторов может быть токовым и амплитудно-фазовым (или фазовым).
Токовое компаундирование позволяет осуществить регулирование по модулю тока.
При включении дополнительной нагрузки на генератор напряжение в сети понизится, а ток в линейных проводах А, В и С увеличится, что вызовет соответственное увеличение тока во вторичной обмотке трансформатора тока ТТ и, наконец, в независимой обмотке возбуждения возбудителя ОВВ . Это приведет к усилению магнитного потока полюсов возбудителя В, а следовательно, и к увеличению напряжения на его зажимах. Увеличенное напряжение в цепи обмотки возбуждения генератора ОВГ создаст дополнительный ток в обмотке и магнитный поток генератора Г, что восстановит прежнее напряжение в сети при новой увеличенной нагрузке.
Стремление получить систему, обеспечивающую более высокую точность регулирования, явилось причиной создания системы фазового компаундирования с коррекцией напряжения. Корректор обеспечивает регулирование по отклонению напряжения и учитывает , влияние на величину напряжения изменения частоты вращения первичного двигателя, температуры обмоток и других второстепенных факторов.
Система, в которой регулирующее воздействие на синхронный генератор осуществляется через возбудитель, называется системой косвенного компаундирования. В самовозбуждающихся синхронных генераторах возбудитель отсутствует и регулирующее воздействие производится непосредственно на обмотку возбуждения генератора. Такие системы называются системами прямого компаундирования.
Из рассмотренных систем АРН наиболее эффективными являются системы с комбинированным регулированием. Они обеспечивают амплитудно-фазовое компаундирование и коррекцию напряжения. Такое регулирование осуществляется с помощью регулятора типа УБК (универсальное быстродействующее компаундирование), статической системы самовозбуждения и др.
Системы компаундирования с регулятором типа УБК характеризуются малой статической погрешностью, значительной фор-сировкой тока возбуждения при коротких замыканиях, чувствительностью и способностью обеспечивать устойчивую параллельную работу генераторов. Однако эти» системы, как правило, являются системами косвенного компаундирования и наличие в них возбудителя снижает быстродействие и надежность, а также увеличивает массу и габариты всей установки в целом. Поэтому в настоящее время они применяются в основном только для генераторов большой мощности.
В судовых установках с генераторами серий МСС , МСК и ГМС в последние годы почти исключительно применяются статические системы самовозбуждения с прямым компаундированием. Представленная на рис. 2 схема обеспечивает самовозбуждение и регулирование напряжения генераторов серии МСК по возмущению и отклонению напряжения. Управляемое фазовое компаундирование (регулирование по возмущению) осуществляется с помощью универсального трансформатора с подмагничиванием УТП , а коррекция напряжения — с помощью трехфазного измерительного трансформатора ТИ и трансформатора тока.
Рис. 1. Принципиальная схема системы токового компаундирования.
Рис. 2. Статическая система самовозбуждения и автоматического регулирования напряжения синхронных генераторов.
Трансформатор имеет три первичные обмотки: две токовые, включенные на геометрическую разность токов фаз (начала обмоток отмечены звездочками), и обмотку напряжения wH, включенную на напряжение между этими фазами. В цепь обмотки напряжения включен дроссель насыщения, позволяющий обеспечить фазовое компаундирование, и батарея конденсаторов, улучшающая условия самовозбуждения генератора.
практически не изменяются. Одновременно с этим изменение напряжения генератора вызывает резкое изменение тока выхода и тока. в в обмотке. Благодаря этому с изменением напряжения генератора изменяется подмагничивание и ток выхода. Это вызывает соответствующее изменение тока возбуждения и более точное выравнивание напряжения сети, на которую работает генератор.
Самовозбуждение синхронного генератора происходит за счет остаточного магнетизма железа ротора. Установочным реостатом изменяется уставка напряжения генератора в пределах ±10%, а установочным реостатом УР2 изменяется статизм регулирования напряжения.
Статические системы самовозбуждения с прямым компаундированием имеют хорошие показатели работы и высокую форсировочную способность, позволяют уменьшить массу и габариты генератора за счет отсутствия возбудителя, а также повысить надежность работы всей установки.