Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок регулировки скорости двигателя

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.
При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет «воспринимать» среднее значение подводимой к нему энергии.

Схема для генерации ШИМ сигнала

Существует много схем для генерации ШИМ сигнала. Одна из самых простых — это схема на основе 555-го таймера. Она требует минимум компонентов, не нуждается в настройке и собирается за один час.

генератор шим сигнала

Напряжение питания схемы VCC может быть в диапазоне 5 — 16 Вольт. В качестве диодов VD1 — VD3 можно взять практически любые диоды.

Если интересно разобраться, как работает эта схема, нужно обратиться к блок схеме 555-го таймера. Таймер состоит из делителя напряжения, двух компараторов, триггера, ключа с открытым коллектором и выходного буфера.

блок схема 555 таймера

Вывод питания (VCC) и сброса (Reset) у нас заведены на плюс питания, допустим, +5 В, а земляной (GND) на минус. Открытый коллектор транзистора (вывод DISCH) подтянут к плюсу питания через резистор и с него снимается ШИМ сигнал. Вывод CONT не используется, к нему подключен конденсатор. Выводы компараторов THRES и TRIG объединены и подключены к RC цепочке, состоящей из переменного резистора, двух диодов и конденсатора. Средний вывод переменного резистора подключен к выводу OUT. Крайние выводы резистора подключены через диоды к конденсатору, который вторым выводом подключен к земле. Благодаря такому включению диодов, конденсатор заряжается через одну часть переменного резистора, а разряжается через другую.

В момент включения питания на выводе OUT низкий логический уровень, тогда на выводах THRES и TRIG, благодаря диоду VD2, тоже будет низкий уровень. Верхний компаратор переключит выход в ноль, а нижний в единицу. На выходе триггера установится нулевой уровень (потому что у него инвертор на выходе), транзисторный ключ закроется, а на выводе OUT установиться высокий уровень (потому что у него на инвертор на входе). Далее конденсатор С3 начнет заряжаться через диод VD1. Когда она зарядится до определенного уровня, нижний компаратор переключится в ноль, а затем верхний компаратор переключит выход в единицу. На выходе триггера установится единичный уровень, транзисторный ключ откроется, а на выводе OUT установится низкий уровень. Конденсатор C3 начнет разряжаться через диод VD2, до тех пор, пока полностью не разрядится и компараторы не переключат триггер в другое состояние. Далее цикл будет повторяться.

Приблизительную частоту ШИМ сигнала, формируемого этой схемой, можно рассчитать по следующей формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 288 Гц.

ШИМ регулятор оборотов двигателя постоянного тока

Объединим две представленные выше схемы, и мы получим простую схему регулятора оборотов двигателя постоянного тока, которую можно применить для управления оборотами двигателя игрушки, робота, микродрели и т.д.

регулятор оборотов двигателя

VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1.

Вместо полевого транзистора можно использовать биполярный n-p-n транзистор, транзистор дарлингтона, оптореле соответствующей мощности.

Регулирование скорости вращения коллекторного двигателя постоянного тока

Двигатели постоянного тока и мотор-редукторы, созданные на их основе, нуждаются в надежной системе управления скоростью вращения вала. Простым и удобным методом решения проблемы является применение широтно-импульсной модуляции (ШИМ). Способ основан на преобразовании постоянного напряжения в импульсное. При этом управление частотой вращения осуществляют путем изменения длительности подающегося импульса.

Например, по такому же принципу используют ШИМ схему в осветительных приборах для регулировки яркости свечения светодиодных ламп. Так как у светодиода небольшое время затухания частота работы устройства регулирования имеет большое значение. Качественные приборы должны полностью исключать мерцание при пониженной яркости свечения.

Управление двигателями постоянного тока методом ШИМ стало возможным благодаря силе инерции. После прекращения подачи напряжения на обмотки вал электродвигателя останавливается не сразу, продолжая движение по инерции. Путем кратковременной подачи напряжения с определенным периодом можно добиться плавного регулирования скорости вращения вала. При этом главным регулирующим параметром является размер паузы между импульсами.

Применение устройства управления для двигателя постоянного тока

Этот метод управления двигателем постоянного тока позволяет плавно изменять скорость вращения вала в широких пределах. ШИМ делает возможным изменение параметров работы двигателя в автоматическом режиме в соответствии с установленными данными. Необходимую информацию регулятор оборотов коллекторного двигателя получает от пользователя или специального датчика, который определяет, температуру, скорость вращения или любой другой параметр. Например, в воздушных системах охлаждения регулятор оборотов изменяет скорость вращения вентилятора на основе данных, полученных от датчика температуры. Это позволяет автоматически замедлять скорость потока воздуха при низкой температуре и увеличивать при высокой.

Читать еще:  Порядок регулировки клапанов на 402 двигателе за два оборота

Схема управления коллекторным двигателем постоянного тока

Простую схему управления двигателем постоянного тока можно собирать из полевого транзистора. Он играет роль электронного ключа, который переключает схему питания двигателя после подачи напряжения на базу. Электронный ключ остается открытым на время, соответствующее длительности импульса.

ШИМ сигнал характеризуют коэффициентом заполнения, который равен обратной величие скважности. Коэффициент заполнения равен отношению продолжительности импульса к периоду его подачи. Скорость движения вала двигателя будет пропорциональна значению коэффициента заполнения. Поэтому, если частота ШИМ сигнала слишком низкая для обеспечения стабильной работы, то вал двигателя будет вращаться заметными рывками. Чтобы гарантировать плавное регулирование и стабильную работу частота должна превышать сотни герц.

Оптимальные значения частоты ШИМ сигнала

Частота может варьироваться в широких пределах от нескольких десятков до нескольких сотен герц. Благодаря емкостной нагрузке происходит сглаживание импульсов. В итоге на двигатель подается «постоянное» напряжение средней величины в зависимости от параметров управляющей системы. Например, если двигатель получает питание от сети напряжением 10В, и к нему подключить регулятор с длительностью импульса равной половине периода подачи, то эффект будет таким же, как при подаче 5В на двигатель напрямую.

Сложности при ШИМ регулировании скорости двигателя постоянного тока

ШИМ является популярным методом регулирования аналоговым напряжением в различных схемах. При использовании этого способа регулирования пользователь может столкнуться с непредсказуемым поведением двигателя. Например, вал может начать вращение в обратную сторону. Это происходит при низких емкостных нагрузках. В коллекторных двигателях в процессе работы происходит постоянное переключение обмоток якоря. Когда подключают регулятор, начинает происходить отключение и включение питание с определенной частотой. Дополнительная коммутация в сочетании с коллекторной может привести к проблемам с эксплуатацией двигателя. Поэтому устройства управления с ШИМ регулированием двигателя должны быть тщательно продуманы и проработаны.

Также причиной нестабильной работы электродвигателя может стать факт влияния силы тока на скорость вращения ротора, которая находится в зависимости от уровня приложенного напряжения. Проблемы могут возникнуть при эксплуатации двигателей на малой скорости по отношению к номинальному значению.

Например, у пользователя есть двигатель, который при номинальном напряжение вращает ротор со скоростью 10об/сек. Чтобы понизить скорость до 1 об/сек недостаточно просто снизить напряжение до 1В. Подобрать подходящее значение подаваемого напряжения сложно и если пользователю и удастся, то при незначительном изменении условий эксплуатации скорость снова изменится.

Решением проблемы является применение системы автоматического регулирования или кратковременное включение электродвигателя на полную мощность. Движение ротора будет происходить рывками, но при правильно подобранной частоте и длительности подаваемых импульсов можно сделать вращение более стабильным. Так, добиваются устойчивого движения вала электродвигателя с любой скоростью, которая не будет меняться в зависимости от нагрузки.

Реализация ШИМ

Многие модели современных ПЛК контроллеров предоставляют возможность организации ШИМ. Но иногда доступных каналов оказывается недостаточно и приходится использовать программу обработки прерывай.

Алгоритм реализации ШИМ:

  1. В начале каждого импульса ставим единицу и ждем повышения значения до заданного уровня.
  2. Сбрасываем линию на ноль.

Длительность импульса легче отследить с определенной периодичностью или ступенями. Например, десять регулировочных ступеней соответствуют 10% от максимального значения. Прежде всего необходимо определиться с частотой импульсов и количеств ступеней регулирования. Далее, умножают полученные значения. Результат произведения даст необходимую частоту прерываний таймера.

При желании можно выбрать подходящую частоту таймера или количество ступеней регулирования и путем расчетов находят необходимую частоту импульсов.

Так же по теме регулирования скорости коллекторного двигателя предлагаем статью "Управление коллекторным двигателем постоянного тока методом ШИМ"

блок управления коллекторным двигателем постоянного тока.

Приложение к статье : Важнейший станок «деревянного» моделиста .

Прежде всего — для чего это нужно. Почти у каждого моделиста имеется самодельный или промышленный электроинструмент с приводом от коллекторного двигателя постоянного тока. При этом обычно такой инструмент не имеет регулятора оборотов или имеется простейшая ступенчатая регулировка. Не буду лишний раз доказывать, что наличие регулятора оборотов в электроинструменте позволяет оптимально подобрать режим для каждой операции, особенно при использовании различных насадок. Кроме того, моделисты часто используют низковольтные нагреватели — паяльники, приспособления для гибки деревянных реек и т. п. При этом с помощью регулятора можно получить оптимальную температуру нагревателя. Моделисту иногда приходится наносить гальванические покрытия, для чего необходим регулируемый источник постоянного тока. Все эти функции способно выполнить устройство, описанное ниже.

Читать еще:  Как пользоваться прибором для регулировки света фар

При конструировании бормашинывстал вопрос о выборе схемы регулятора оборотов. Реостатные схемы регулирования скорости вращения коллекторных двигателей постоянного тока, в том числе с применением силовых транзисторов, на которых падает часть напряжения, обладают низким КПД при малых и средних оборотах. На балластных транзисторных ключах рассеивается значительная тепловая мощность, что ужесточает требования к системе их охлаждения. Поэтому выбор системы регулирования скорости вращения пал на импульсные схемы с изменением ширины прямоугольных импульсов напряжения, подаваемых на обмотку двигателя (широтно-импульсная модуляция — ШИМ). Принцип ШИМ заключается в следующем: напряжение в нагрузку подается импульсами постоянной амплитуды, причем соотношение между шириной импульса и паузы (скважность) регулируется, что эквивалентно изменению напряжения питания на нагрузке. Достоинством этой схемы является ее высокая экономичность и надежность. Управляющий нагрузкой транзистор бывает только либо полностью включен, либо выключен, поэтому он практически не нагревается и его можно устанавливать без теплоотвода.

После анализа различных регуляторов качестве базовой была выбрана схема , опубликованная в журнале (№4/2001., перепечатка из «Hobby Elektronika» №7/01, автор Иштван Кекеш). Регулятор (см.схему) содержит задающий генератор напряжения треугольной формы частотой 2кГц (DA1.1, DA1.4), электронный ключ VT1 и регулятор скважности (DA1.2, DA1.3, R8). На рисунке ниже показаны графики напряжений в типовых точках схемы.

Здесь синим цветом показано напряжение на выходе генератора треугольного напряжения (вывод 1 DA1), красным — напряжение регулировки оборотов с потенциометра R8, зеленым — напряжение на двигателе. Очень наглядно видно, что включение и выключение напряжения на нагрузке происходит в момент совпадения напряжения задающего генератора и напряжения на регулирующем потенциометре. Чем выше управляющее напряжение, тем шире импульс на нагрузке.

В схеме предусмотрена возможность включения двигателя с помощью ножной педали SA2. В моем варианте в качестве педали работает обыкновенный короткоходовый концевой выключатель с нормально замкнутыми контактами (в народе — ), лежащий на полу. При выключенном SA1 двигатель работает постоянно, при включенном — только при нажатии на педаль. Благодаря наличию конденсатора C2 пуск двигателя осуществляется плавно, что иногда может быть полезно (при указанной емкости C2 примерно за 1 сек.). Переключатель SA4 служит для реверсирования двигателя. Диод D3 стабилизирует питание регулятора. Питание осуществляется через понижающий трансформатор TV1 и выпрямитель D4. Параметры трансформатора зависят от примененного электродвигателя. В первом приближении напряжение вторичной обмотки трансформатора должно быть равно номинальному напряжению электродвигателя плюс 5 вольт, падающих на выпрямителе и ключевом транзисторе. Для возможности работы в форсированном режиме можно добавить еще процентов 20-30. Расчетный ток вторичной обмотки трансформатора, диодов выпрямителя и ключевого транзистора должны быть больше, чем ток, потребляемый электродвигателем, причем для надежности работы лучше дать запас в 3-5 раз. При напряжении питания менее 20В диод D3 можно исключить. Напряжения, указанные на схеме, соответствуют двигателю 27В 30 Вт.

Большинство элементов схемы смонтировано на печатной плате размером 65Х40 мм. (более тонкой линией показана перемычка) Плата установлена в корпусе на двух трубчатых стойках с винтами М2,5 (см. также схему расположения элементов и шаблон для сверления отверстий). Внутри корпуса смонтированы трансформатор, конденсатор С4, выпрямитель D4. Регулятор оборотов R8, переключатели и разъемы для подключения двигателя и педали смонтированы на лицевой панели, резисторы R13 И R14 смонтированы на R8.

В качестве DA1 можно применить любой универсальный счетверенный операционный усилитель. В оригинале были указаны TL064, TL075, TL084, я применил LM324. Ключевой транзистор применен КТ829А (100В, 8А ), для более мощных двигателей можно применить КТ827А (100В, 20А). Диоды D1 и D2 защищают VT1 от выбросов напряжения на индуктивной нагрузке.

При налаживании R13 и R14 не устанавливают, провода от платы припаивают прямо к R8. При правильном монтаже и исправных деталях схема начинает работать сразу. Вращением R8 проверяют регулировку оборотов от нуля до максимума. Если последние не совпадают с крайними положениями R8, необходимо подобрать R13 и R14, чтобы максимум и минимум совпали с крайними положениями регулятора. Возможен вариант, когда схема не будет работать из-за того, что не запускается задающий генератор. В этом случае можно попробовать немного увеличить номинал R4. Для изменения времени плавного пуска можно изменять емкость C2.

В заключение хочу отметить, что потратив всего около $10 и немного свободного времени, можно значительно улучшить характеристики своего электроинструмента. Все вопросы по изготовлению и наладке данного устройства задавайте в форуме.

Блок регулировки скорости двигателя

АО «Лаборатория Электроники» производит широкий спектр блоков управления коллекторными двигателями постоянного тока с возможностю использования различных сигналов обратной связи по скорости вращения и положению.

Серия AWD10 – универсальное решение для двигателей малой мощности. AWD10 позволяет использовать для стабилизации скорости противоЭДС, тахогенератор или импульсный датчик. Обеспечивает ограничение момента на валу по 16 градациям. Обратная связь по положению возможна только с помощью потенциометрического датчика. Блок AWD10 управляется аналоговыми и дискретными сигналами или по интерфейсу RS485.

Читать еще:  Регулировка тормозов на дэу нубира

Серия AWD17 – облегченное решение для двигателей малой мощности. Регулирование скорости осуществляется только по противоЭДС, управление только аналоговыми сигналами.

Серия AWD50 — универсальное решение для двигателей средней и большой мощности. Регулирование скорости осуществляется по противоЭДС, тахогенератору или импульсному датчику. Обеспечивается плавное управление моментом или ограничением момента на валу двигателя от нуля до максимального значения. Управление положением возможно по потенциометрическому датчику или квадратурному энкодеру. Управление блоком AWD50 возможно по интерфейсу RS485 (протокол Modbus RTU) или с помощью аналоговых и дискретных сигналов.

AWD50 — Блок управления двигателем постоянного тока

Блок управления двигателем серводвигателем постоянного тока AWD50 предназначен для с управления скоростью, моментом и угловым положением вала коллекторного двигателя с напряжением питания от 12 до 110 В и током до 50 А.

ЭР387 — блок управления тяговым электродвигателем

Блок управления тяговым электродвигателем предназначен для дистанционного управления перемещениями передаточной тележки по рельсу. Блок управления реализует плавное ускорение и торможение двигателя.

AWD10 — Блок управления двигателем постоянного тока с интерфейсом RS485​

Блок управления двигателем постоянного тока AWD10 предназначен для управления скоростью и направлением вращения двигателя постоянного тока с напряжением питания от 12 до 90 В и током до 10 А методом широтно импульсной модуляции (ШИМ).

AWD17 — блок управления двигателем постоянного тока

Блок управления коллекторным двигателем постоянного тока ДПТ AWD17 предназначен для реверсивного стабилизированного управления скоростью вращения коллекторного двигателя с напряжением питания от 7.5 до 36В с током до 10А.

​​​​ELSC100 — Преобразователь аналоговых сигналов 2-х канальный

Преобразователь сигналов ELSC100 предназначен для совместимости блоков управления AWD10 с управляющими сигналами от -10 до +10В, а так же подключения двигателй с тахогенератором.

EL101B — Блок защиты источника питания

Блок защиты EL101B предназначен для защиты импульсных источников питания от индуктивных выбросов напряжения при торможении двигателя.

ЭР210 — блок управления коллекторным двигателем постоянного тока в корпусе

Блок управления ЭР210 предназначен для стабилизации скорости вращения реверсивных коллекторных двигателей постоянного тока с напряжением 24 В.

АВД31 — Блок управления шаговым двигателем

Блок управления шаговым двигателем АВД31 предназначен для управления скоростью и направлением вращения шагового двигателя при помощи STEP/DIR-драйвера.

Коллекторные двигатели постоянного тока получили широкое распространение за счет своей дешевизны и высокого КПД. Чаще всего такие двигатели используются в старт/стоп режиме и не требуют для своего подключения никакой пускорегулирующей аппаратуры, кроме обыкновенного выключателя. Однако, часто требуется регулировка скорость вращения, момент на валу или положение механизма, приводимого в движение двигателем. В таких случаях применяют микропроцессорные блоки управления коллекторными двигателями постоянного тока. Простейшим регулятором оборотов двигателя является источник питания с изменяемым выходным напряжением или ШИМ регулятор (именно его продают на Aliexpress). Это простые и недорогие решения, но такой регулятор не имеет обратной связи — обороты двигателя с таким регулятором зависят от нагрузки на валу. Для решения этой проблемы в регуляторы вводят обратную связь по скорости вращения. Простейшим вариантом получения информации о скорости вращения двигателя является установка на его валу тахогенератора или импульсного датчика. Такие решения позволяют решить проблему стабилизации скорости вращения двигателя, но усложняет конструкцию изделия и увеличивает его стоимость. Современные микропроцессорные технологии позволяют использовать в качестве тахогенератора сам электродвигатель (почти все электрические машины обратимы), измеряя ЭДС, генерируемую двигателем в момент кратковременного отключения от него питающего напряжения. Такое решение представляется оптимальным по соотношению цена/качество.

Вторым важным параметром регулирования коллекторных двигателей является момент на валу двигателя. В большинстве случаев ограничение момента требуется для исключения повреждения самого двигателя или механизма. Часто необходим режим стабилизации именно выходного момента двигателя, например, для управления электроприводом скутера или для регулировки силы натяжения у станка для перетяжки теннисных ракеток. В качестве сигнала выходного момента чаще всего используется мгновенное значение тока якоря двигателя.

И третий параметр управления –положение или координата механизма, приводимого в действие двигателем постоянного тока. Управление скоростью, моментом и положением позволяет создавать полноценные сервоприводы на основе коллекторных двигателей. Сигнал обратной связи по положению может быть получен от аналогового потенциометрического датчика или энкодера на валу двигателя. Для задания требуемого положения может использоваться аналоговый сигнал, цифровой интерфейс или входы step/dir как в блоках управления шаговыми двигателями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector