Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Делаем плавную регулировку вентилятора печки

Делаем плавную регулировку вентилятора печки

Везде в интернете рассказывают, как поставить 4-х позиционный регулятор от Калины, принцип действия которого заключается в переключении 4-х силовых резисторов разного номинала. Но мы пойдем другим путем — решим вопрос кардинальным образом, применяя современные технологии. Будем делать плавный регулятор оборотов.

В описании к набору написано:
"Регулятор яркости ламп накаливания 12В/50A
Устройство предназначено для регулировки яркости ламп накаливания, работающих от постоянного тока, мощностью до 600Вт (50А). … Предлагаемое устройство можно использовать в качестве регулятора мощности различных нагревателей, работающих от напряжения постоянного тока, например, подогревателей автомобильных сидений или двигателей. Устройство можно использовать для регулирования оборотов мощных двигателей постоянного тока. Применение современной элементной базы позволило повысить КПД регулятора до 99 % и максимально уменьшить габариты устройства."

Вентилятор печки потребляет до 6 ампер, соответственно, данный регулятор подойдет.
Будем собирать и смотреть. Продолжение следует…

UPD. В комментариях к набору обнаружил следующий диалог:
Евгений58 17.11.2016 04:16
Здравствуйте. Подключил этот регулятор к электромотору печки, добавив при этом диод между выводами мотора. Мотор при работе постоянно пищит, можно ли в этой схеме увеличить частоту ШИМ за диапазон слышимости? Как это сделать?
+1 Советник 17.11.2016 10:11
Замените конденсаторы С2 и С4 на номинал 2,2нФ и 22нФ соответственно, пищать перестанет.

Если будет пищать, знаю что делать.

Также сам вентилятор печки был заменен на вентилятор фирмы Luzar luzar.ru/catalogue/elektr…telya-2101-2107-lfh-0101/
Его преимущество в том, что он не на втулках, а на шарикоподшипниках. Лузаровские вентиляторы также подвергаются балансировке, благодаря чему значительно снижается шум от работы. Когда заменил вентилятор радиатора двигателя на лузаровский, работать стал бесшумно и дуть лучше в 2 раза. Штатный орал так, что слышно было этот вой из салона.
Думаю, вентилятор печки тоже свои преимущества покажет.

Продолжение 24.09.2017
Теперь задача сверстать все это на автомобиль.
Электрическая схема подключения вентилятора печки классики всем известна

Принцип ее в том, что с питания (желто-черного провода) с помощью трехпозиционного переключателя напряжение подается либо напрямую на мотор (в первом положении выключателя), либо через шунтирующее сопротивление (второе положение выключателя) — половинная скорость.

Я решил сохранить выбор вариантов следующим образом:
Первое положение переключателя — подача напряжения на двигатель через шунт, как и было раньше — фиксированная половинная скорость.
Второе положение переключателя — подача напряжения через схему плавной регулировки.
Однако, посмотрев на схему подключения регулировки, становится понятно, что напряжение на двигатель должно подаваться с точек 2 и 3, а с контактом GND у двигателя не будет прямого контакта, только через транзистор VT1 схемы плавного управления.

Поэтому сохранить управление через плюсовой провод не удастся, придется переделать трехпозиционный переключатель на минусовой провод. Схема получилась следующая:

Данную схему легче понять, читая наоборот, начиная от массы, и двигаясь по направлению к плюсовому проводу. Ток от выключателя пойдет либо по коричневому проводу, либо по серому.

Для чего нужен шунтирующий диод? — при прекращении импульса ШИМ с устройства питания индуктивная нагрузка (двигатель) создает обратный всплеск напряжения, который вредным образом воздействует на транзистор. Что и было проверено экспериментально: и с диодом, и без диода каких-либо существенных изменений в поведении двигателя не обнаружено, но с диодом транзистор был холодным. Как только отключал диод — транзистор сразу же начинал безбожно греться.

Следующий нюанс — частота управления ШИМ — 500 Гц — это звуковая частота, поэтому двигатель издавал писк. Чтобы писка не было, нужно, как уже было замечено, сдвинуть частоту ШИМ за предел слышимости — 20 000 Гц. Для этого заменил конденсаторы C2 и C4 на 2,2нФ и 22нФ соответственно. Писк исчез практически полностью. Но! Стал снова греться транзистор, хотя не так сильно, как без диода. Легко предположить вероятную причину: диод не рассчитан на частоту 20 кГц, он медленный, не успевает закрываться, и пропускает обратный импульс. Китайский диод на 10А 1000В.
Нужно заменить на высокочастотный (диод Шоттки или ультрафаст КД213).

Итак, заменил диод на КД213, однако транзистор все равно греется. Путем общения на форумах было выяснено, что при повышении частоты за 20 кГц резко падает КПД данного регулятора, транзистор не успевает открываться и закрываться полностью, поэтому работает не в ключевом режиме.

Понизил частоту до 10 Гц — эта частота находится тоже за пределами слышимости. Для этого увеличил номиналы конденсаторов С2 и С4 на 22нФ и 2,2мкФ соответственно. Теперь транзистор холодный и вентилятор тоже работает отлично.

Была еще одна особенность. Регулировка вентилятора работала не на всем диапазоне поворота потенциометра, а только где-то на участке 15% от его полного оборота. Поэтому был куплен переменный резистор на 10 кОм вместо 50 кОм, был вынесен за пределы печатной платы, и к каждой из боковых ножек временно припаяно по переменному резистору на 50 кОм. После установки на автомобиль были экспериментальным путем подобраны величины этих боковых резисторов таким образом, чтобы при минимуме главного потенциометра вентилятор обдувал едва-едва, а на максимуме — в полную силу.

После чего резисторы R1 и R3 были выпаяны и заменены на другие с параметрами, соответствующими найденным величинам.

Итоговый результат можно наблюдать на видео.

ВЫВОДЫ:
1. Справедливости ради надо сказать, что при минимальных регулировках обдува существующая система не дает заметного эффекта. Просто движение автомобиля без работы вентилятора дает больший обдув, чем работающий вентилятор на минимальных оборотах. Это связано с низкой эффективностью лопастного вентилятора. У всех современных автомобилей используется центробежный вентилятор (улитка), который при более бесшумной работе обеспечивает гораздо более сильный поток воздуха.
Поэтому корпус собранного регулятора я добавил пару подстроечных резисторов по 10 кОм, и величины были подобраны так, чтобы при минимальном положении регулятора обдув все-таки обеспечивался заметный. При максимальном положении — максимальный. А между ними, соответственно, свобода плавной регулировки.

2. Для совсем эффективной работы нужно подходить еще более коренным образом — менять конструкцию самой печки — лопастной вентилятор менять на улитку, с перепроектированием корпуса печки. Где-то на драйве были примеры такой переделки.

Читать еще:  Трос ручника ланос регулировка

3. Еще хотелось бы добавить светодиодную индикацию (полоску) вокруг ручки регулятора, чтобы видеть уровень обдува визуально, т.к. проверять поток воздуха рукой не всегда удобно.

4. Электросхема классики такова, что вентилятор печки работает вне зависимости от того, включено ли зажигание. Т.е. теоретически возможно забыть выключить вентилятор, работающий на минимальных оборотах, и уйти, а утром придти и обнаружить посаженный аккумулятор. Поэтому нужно забор напряжения питания вентилятора переделать — брать с клеммы после замка зажигания, как у нормальных современных автомобилей. Для чего вентилятор сделан независимо от зажигания, непонятно. Ведь при выключенном двигателе обдув обеспечивает горячий воздух в течение минуты — не более, далее становится холодным.

Регулятор оборотов двигателя постоянного тока 12 вольт

Регулятор вращения для мотора

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Регулятор вращения для мотора

Регулятор вращения для мотора

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Регулятор вращения для мотора

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Регулятор вращения для мотора

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Регулятор вращения для мотора

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Регулятор вращения для мотора

Регулятор вращения для мотора

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Регулятор вращения для мотора

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Регулятор вращения для мотора

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Принципиальная электрическая схема.

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Читать еще:  Что бы отрегулировать трос сцепления

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Регулятор вращения для мотора

Регулятор вращения для мотора

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Регулятор вращения для мотора

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Как регулировать обороты 12 вольтового двигателя

Вот и хочу попробовать что из этого выйдет. Ток потребления мотора 220В гораздо меньше чем у 12-ти вольтового. Да и 220В в авто лишним не будет.

Добавлено через 19 минут 41 секунду
Во ! У меня же в гараже катушечные магнитофоны стоят. Наждачки знатные получались. Надо с ними поколхозить.

Клаус вертолет,
есть регуляторы всякие от Мастеркит-а на 12вольт и 50А, скажем модель NM4511 http://www.masterkit.ru/main/set.php?code_id=23556 почему бы его не поставить на штатный вентилятор? . может регулировать лампы/моторы/подогрев сидений/.
Таких регуляторов/моделей/с разными характеристиками у Мастеркита десяток разных наберётся, на разный вкус/потребности, есть и регулятор мощности.

глянь в яндекс картинках http://images.yandex.ru/yandsearch?text=%D0%BC%D0%B0%D1%81%D1%82%D0%B5%D1% 80+%D0%BA%D0%B8%D1%82+%D1%80%D0%B5%D0%B3%D1%83%D0% BB%D1%8F%D1%82%D0%BE%D1%80&rpt=image

Для особо любопытных поясню: хочу в авто проложить сеть на 220В, и заодно управление мотором отопителя сделать на 220В ( на нем проще сделать плавное регулирование оборотов)

Во ! У меня же в гараже катушечные магнитофоны стоят. Наждачки знатные получались. Надо с ними поколхозить.
C регулировкой скорости очень проблематично будет:):):) . Для этого мотор придётся запитать через генератор(соответствующей мощности) с изменяемой частотой генерации .
У меня же в гараже катушечные магнитофоны стоят
Какой марки?
Наждачки знатные получались
Ну или хотябы марку их движков:):drinks:.

Какой марки?
как залезу на антресоль, так скажу.

Добавлено через 2 минуты 7 секунд
Так, ладно, задам вопрос по другому. Какие марки коллекторных электромоторов доступные ( это значит : " есть такой-то но ты его ни где не купишь 🙂 ) вы знаете ?

1. времени нет
2. я пока теорию раскладываю
3. пока не к спеху, идет сбор информации
4. А вот как торкнет, так и пойду 🙂

просто у нас в городе одни марки представлены у вас другие, я посоветую двигатель, а вы его у себя и найти не сможете 🙂

а так смысла, лично я не вижу,
да ток меньше, но напряжение больше, значит выше требование к изоляции.
да и напряжение переменное.

но напряжение больше, значит выше требование к изоляции.
да и напряжение переменное.

вот это как раз абсолютно не тревожит 🙂

вот это как раз абсолютно не тревожит 🙂

может сразу 400 Гц авиационную схему?

Коллекторные двигатели постоянного тока и переменного одинаковы конструктивно, двигатель переменного тока может спокойно работать на постоянном, наоборот не всегда, так как железо может быть не для работы на переменном токе.
единественное, что не могу понять, чем 12 вольтовые не устраивают?
Вот именно, конструктивно одинаковые двигатели, только рабочие напряжения разные, соответственно нужен преобразователь, а это потери, если ставить асинхронный или синхронный двигатель, то скорость по правильному на них регулируется частотой, на синхронном по другому и не как, там нет скольжения.

Добавлено через 1 минуту 47 секунд
Чем не усраивает стандартный блок плавной регулировки скорости вентилятора 107-й печки?

Для коллекторных или асинхронных?

Добавлено через 2 минуты 18 секунд
Если имеются ввиду димеры для освещения, то они расчитаны на активную нагрузку и на электродвигатели их ставить нельзя, а димер для вентилятора еще поискать надо.

Добавлено через 1 минуту 17 секунд
правда не вкурсе чтоль?

Придётся ещё думать :как охладить киловатный маленький движок
На полную мощность килловатник использоваться не будет, с крыльчаткой от стокового отопителя он будет создавать бешенный поток всвязи с чем радиатор отопителя не справится с возросшим объемом воздуха, проще говоря много ели теплого воздуха. Поэтому придется экспериментальным путем выяснить насколько будет греться при определенной нагрузке.
и гудеть он будет по хлеще чем вентилятор охлаждения
Вопросы касаемые шума решаются очень просто — шумоизоляция. Что мешает обклеить шумкой не только салон но и корпус отопителя?

Если рассматривать что этот двигатель будет работать в полную мощность, то туп без кардинальных переделок отопителя не обойтись. Могу нарисовать схемку глобальной переделки, но чуток позже. работы полно.

зачем этот колхоз с 220-ти вольтовым мотором?
А на кой он нужен со стандартной крыльчаткой (у вас мощности стокового не хватает. )

Это Клаус вертолет, тему поднял, а мы фантазируем просто.

много всего кухонной бытовой техники используется колекторый мотор, те же миксеры. блендеры..
Точно у меня блендер БОШ и Витёк. Бош — 500ВТ, Витёк 350ВТ. Довольно компактные двигатели.

Только режим работы у всех кратковременный, а на отопитель надо с ПВ=100%

тогда от стиральной машины! вот где мощь!

тогда от стиральной машины! вот где мощь!

Они более громоздкие чем даже от пылесоса, да и крепления не удобные, хотя мощнее — не спорю.

Способы увеличения мощности электродвигателя

Бывает, что мощности электродвигателя недостаточно для обеспечения запуска и работы какого-либо устройства. Как увеличить мощность электродвигателя? Прежде всего, следует знать причину: почему не хватает мощности — а она кроется в параметрах тока, протекающего по обмоткам агрегата. Следовательно, нужно увеличить его значение, либо включив двигатель в сеть большей частоты (если это устройство переменного тока), либо внеся некоторые конструктивные изменения (при включении в бытовую сеть). Ниже мы рассмотрим последний случай.

Читать еще:  Диагностирование и регулировка рулевого управления то рулевого управления

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение. Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках. Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью. Не забывайте о мерах предосторожности.

Увеличение оборотов электродвигателя

Увеличение оборотов электродвигателя также ведет к повышению его мощности. При выборе способа увеличения оборотов учитывайте тип агрегата, особенности модели и область ее применения.

Для повышения частоты вращения коллекторного двигателя следует или уменьшить нагрузку на вал, или увеличить напряжение питания. Обратите внимание на следующие нюансы:

  • Мощность двигателя должна держаться в рамках номинала.
  • Работа коллекторного двигателя с последовательным возбуждением без нагрузки, если не снижено питание, чревата его выходом из строя, так как он может разогнаться до слишком большой скорости.
  • Увеличение оборотов с помощью шунтирования обмотки возбуждения часто приводит к сильному перегреву мотора.

Вышеуказанный способ подходит и для электродвигателей с электронным управлением обмотками (в них используется обратная связь), поскольку их свойства очень схожи с коллекторными моделями (главное различие – невозможность осуществления реверса путем переполюсовки). Все перечисленные ограничения должны соблюдаться при работе с двигателями данного типа.

В асинхронном двигателе, подключаемом непосредственно к сети, частоту вращения регулируют, изменяя напряжение питания. Этот способ не слишком эффективен, поскольку коэффициент полезного действия сильно меняется из-за нелинейного характера зависимости скорости от напряжения. К синхронному двигателю данный метод применять нельзя.

Трехфазный инвертор позволяет регулировать обороты электродвигателей обоих типов (синхронного и асинхронного). Прибор должен обеспечивать уменьшение напряжения при снижении частоты.

Зная, как сделать мощнее электродвигатель, вы сможете заставить оборудование, к которому он подключен, работать с гораздо большей эффективностью и КПД. Естественно, перед началом работ следует четко представлять себе номинальную мощность двигателя. Данные можно найти в паспорте или на табличке, прикрепленной к корпусу агрегата. Если они отсутствуют (или не читаемы), воспользуйтесь одним из способов определения мощности, описанных в предыдущих статьях.

Работая с электродвигателем, соблюдайте правила техники безопасности. Не допускайте его перегрева и следите, чтобы он эксплуатировался в подходящих условиях. При поломке агрегата или первых признаках неисправности проведите технический осмотр и устраните неполадки. Если проблема слишком серьезная, и вы не можете справиться с ней самостоятельно, обратитесь к специалисту. Срок службы двигателя зависит от множества факторов, но в ваших силах свести к минимуму возможность поломки и сделать так, чтобы устройство работало долго и эффективно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector