Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лабораторный блок питания на модулях из Китая

Лабораторный блок питания на модулях из Китая

Мой лабораторный блок питания со снятой верхней крышкой

В этой статье я хочу рассказать и показать на фото свой лабораторный блок питания, который я собирал по блочно, на готовых модулях из Aliexpress. Об этих самых модулях я уже рассказывал по отдельности на сайте. Хотелось сделать простой, надежный, доступный по цене блок, с необходимыми параметрами и небольшими габаритами. В интернете посмотрел пару роликов о подобных блоках, заказал необходимые модули и собрал сам. Изначально в качестве источника питания был применен переделанный компьютерный БП. Но так как мне так и не удалось добиться от него нормальной работы (он довольно сильно грелся, и немного не дотягивал до расчетного максимального тока), решено было взять готовый источник питания на том же Aliexpress. Максимальное рабочее напряжение для блока в большинстве случаев достаточно 0-30 Вольт, хотя была идея сделать от 0 до 50 Вольт.Источник питания, который я применил, отдает 36 Вольт и ток до 5 Ампер. Мощности в 180 Ватт для моих задач вполне достаточно. В качестве регулятора напряжения и тока (ограничения), использовал DC-DC преобразователь на XL4016. В качестве индикатора выступает модуль вольтамперметр dsn-vc288. В качестве корпуса был применен обычный пластиковый корпус типа Z1 (70x188x197 мм). В принципе этих модулей уже достаточно для построения лабораторника, но я добавил сюда еще модуль на LM2596, для того чтобы вывести 5 Вольт на USB разъемы расположенные на передней панели. Еще нам конечно же понадобятся пара выносных переменных резистора на 10 К, тумблер для включения/отключения питания, пара USB гнезд (я взял сдвоенное гнездо), и пара гнезд типа «банан», для подключения выходного кабеля. Крепим модули внутри корпуса, размечаем и сверлим переднюю панель.

Размещаем модули внутри лабораторного блока питания

Передняя панель лабораторного блока питания

Затем выпаиваем из модуля оба подстроечных резистора и припаиваем на их место переменные резисторы на проводах достаточной длинны (я последовательно резисторам на 10 К поставил еще на 1 К, для точной настройки, однако это не дало особого эффекта). Ну и дальше соединяем все модули согласно схеме.

Задняя стенка лабораторного блока питания и источник питания Разводка внутри лабораторного блока питания Разводка между модулями лабораторного блока питанияЛабораторный блок питания на верхнюю стенку приклеен вентилятор

Если делаете с USB, то не забудьте настроить модуль LM2596 на 5В. И обратите внимание что минусовый провод питания USB берется не с модуля LM2596, а с выходной массы БП (с минусового «банана»). Это необходимо для того чтобы когда вы подключаете что-то к USB блоку, вы видели потребляемый ток. В моем блоке можно заметить на фото еще один модуль — это тоже DC-DC, я его вместо LM2596 хотел оставить на роль питания USB, но он довольно прожорливый в холостом режиме, поэтому оставил LM-ку. Также у меня есть вентилятор. Если тоже захотите оборудовать блок вентилятором, то подберите подходящий по габаритам и на напряжение 5 В. Подключается он к плюсу и минусу модуля LM2596 (в этом случае минус берется от модуля, иначе на индикатор будет постоянно выводиться потребляемый вентилятором ток). Очень советую первое включение производить через лампу накаливания 40-60 Вт. Если что-то не так, в этом случае вы избежите фейерверка. У меня блок заработал сразу, и пока что с ним никаких проблем не было.

Лабораторный блок питания для рабочего места (3-18В 4А)

При ремонте и конструировании различной электронной техники возникает необходимость в мощном лабораторном блоке питания с регулировкой в широких пределах выходного напряжения и тока.

Исходя из вышесказанного был разработан и изготовлен относительно несложный блок питания, не требующий дефицитных деталей, имеющий следующие параметры и возможности:

  • выходное стабилизированное напряжение регулируется в пределах 3. 18 В, а при токе 4 А — в пределах 3. 16 В;
  • максимальный выходной ток 4 А;
  • размах пульсаций и шумов при выходном токе 3 А не более 2 мВ;
  • ток короткого замыкания не более 15 мА;
  • ограничение выходного тока регулируется в пределах 0,35. 4 А;
  • самозапуск после устранения короткого замыкания и звуковая сигнализация возникновения короткого замыкания;
  • световая индикация режима стабилизации тока;
  • индикация потребляемого тока;
  • возможность зарядки аккумуляторных батарей напряжением от 1,2 до 15 В стабильным током от 0,35 до 4 А;
  • питание паяльника ЭПСН-12-25 Вт от отдельной обмотки.

Напряжение переменного тока с обмоток II и III трансформатора Т1 (рис. 1.1) через предохранитель FU2 и переключатель SB1 поступает на выпрямитель на мощных диодах VD1-VD4 (рис. 1.2).

Выпрямленное напряжение фильтруется конденсаторами С4, С5. На диодах VD5 и VD6 выполнен отдельный выпрямитель для питания операционного усилителя (ОУ) DA1 типа К140УД7, что позволяет питать усилитель DA1 напряжением с меньшим уровнем пульсаций.

На этом ОУ выполнен элемент сравнения выходного напряжения с опорным. Максимальное однополярное напряжения питания для К140УД7-40 В.

Блок питания для рабочего места (3-18В 4А)

Напряжение на стабилитроны VD18 и VD19 подается с генератора стабильного тока на полевом транзисторе VT7. Конденсатор С16 уменьшает шумы стабилитронов. Выходное напряжение стабилизатора регулируется переменным резистором R20. Усилитель выходного тока ОУ выполнен на транзисторах ѴТЗ, ѴТ4, ѴТ5. Диапазоны выходных напряжений переключаются кнопкой SB1. Защита от короткого замыкания (КЗ) выполнена на транзисторе ѴТ1. При КЗ выхода стабилизатора напряжение на эмиттере ѴТ1 становится меньше напряжения на его базе, ѴТ1 открывается, напряжение на базе ѴТ5 уменьшается почти до нуля, и транзисторы ѴТЗ-ѴТ5 закрываются. Небольшой выходной ток, протекающий по цепи VD15, R10, необходим для запуска стабилизатора после устранения причины КЗ.

Конденсатор С6 необходим для запуска стабилизатора в момент включения блока питания в сеть, если к выходу стабилизатора подключена нагрузка. Диод VD13 предотвращает пробой перехода база-эмиттер транзистора ѴТ1, когда напряжение на выходе стабилизатора больше 6 В.

Блок питания для рабочего места (3-18В 4А)

Узел ограничения выходного тока выполнен на транзисторах ѴТ2 и ѴТ6. При увеличении падения напряжения на R2 начинает открываться маломощный германиевый транзистор VT2. При подходе к режиму ограничения выходного тока начинает слабо светиться светодиод VD14. При дальнейшем увеличении выходного тока транзистор VT2 открывается еще больше, вслед за ним открывается VT6, который через резистор R13 шунтирует выход операционного усилителя. Напряжение на базе VT5 снижается, уменьшается напряжение на выходе стабилизатора, схема входит в режим стабилизации выходного тока. Конденсатор СЮ умень шает пульсации на нагрузке при работающем ограничителе тока. Потребляемый ток индицируется микроамперметром РА1. Его чувствительность устанавливается резистором R3.

Цепь С14 R14 служит для устранения самовозбуждения стабилизатора на высоких частотах, С20 — на низких. Переключатель SB1 на схеме показан в положении 7. 18 В.

Сигнализатор короткого замыкания выполнен на КМОП микросхеме DD1 и транзисторах VT8 и VT9. При напряжении на выходе стабилизатора менее 0,6 В транзистор VT8 закрывается, на выв. 1 DD1.1 поступает логическая единица. Генератор на DD1.1 и DD1.2 начинает работать с частотой 4. 6 Гц, периодически запуская второй генератор на DD1.3 и DD1.4, работающий на частоте 300. 600 Гц. В результате на базу VT9 поступают пачки импульсов, и телефонный капсюль ВА1 издает прерывистый звуковой сигнал.

Микросхема DD1 питается от параметрического стабилизатора на элементах R15, VD16, VD17. Стабилитрон VD17 предотвращает ошибочное срабатывание сигнализатора при выключении блока питания.

Детали. Постоянные резисторы типа МЯТ, С2-23 мощностью не менее указанной на схеме. R2 — пять резисторов МЛТ-2 по 2,7 Ом каждый. Переменный резистор R5 желательно проволочный, например, ППЗ-12 на 68. 220 Ом. Переменный резистор R20 — СПЗ-ЗОА, СП1-1, СПЗ-42 сопротивлением 4,7. 15 кОм. Оксидные конденсаторы К50-16, К50-35, К50-24 или аналогичные импортные. С4 и С5 можно заменить одним К50-18 на 10000. 20000 мкФ, 63 В. Остальные конденсаторы — К73-15А, К73-9, К73-17, МБМ. Не рекомендуется применять отечественные керамические конденсаторы по причине их низкой надежности.

Читать еще:  Регулировки самодельного плуга на мотоблоке

Диоды VD1-VD4, VD20-Kfl202, КД203, Д242, Д243, Д244 с любыми индексами. Диоды VD7-VD11, VD21 заменимы на любые из КД208, КД522, КД102, КД103, КД105, 1 N4001-1 N4007, диоды КД209А — на любые из КД208, КД212, КД221, КД105. Стабилитроны: VD16 — любой на 10. 12 В; VD17 — КС156А, КС147А. VD18 заменим на любой импортный на 2. 3 В, например, 1N5985B, 1N5986B.

Его можно заменить на один светодиод АП307Б, соединенный последовательно с диодом типа КД521, КД522. VD19 — любой маломощный на 5,5. 7 В, например, КС156А, КС162А, КС168А, 1N5995B, 1N4735A. Светодиоды — любые видимого спектра, подходящие по габаритам. VD14 — желательно красный, например КИПД21 (Г-К).

Транзисторы КТ503 с индексами Б-Е, или КТ602, КТ608, КТ630, КТ645, КТ646, 2SC2331 с любыми индексами. МП26Б заменим на любой из МП25, МП26. Мощный транзистор КТ865А можно заменить на КТ818 с любым индексом в металлическом корпусе или на относительно дешевые импортные — 2SA1106, 2SA1186, 2SA1301. Транзистор КТ805АМ заменяется на любой из серий КТ815, КТ817, КТ819, КТ961. Вместо КТ3102Б-КТ3102А, КТ315Г, КТ503Г, КТ645А или 2SD734 с коэффициентом передачи тока базы не менее 200. КПЗОЗА заменим на любой из этой серии с начальным током стока не более 3 мА. Транзистор VT8 — любой из серий КТ312, КТ315, КТ3102, SS9014.

Микросхему DA1 К140УД7 можно заменить на К140УД6, КР140УД708, КР140УД608, КР140УД18. Вместо К561ЛА7 можно использовать микросхемы 564ЛА7, КР1561ЛА7 или собрать аналогичный генератор на других 2-4-входовых инверторах этих серий.

Микроамперметр РА1 — М4387, М4761 или любой другой малогабаритный. ВА1 — любой телефонный капсюль или малогабаритный динамик с сопротивлением катушки не менее 40 Ом.

Кнопка SB1 — П2К с четырьмя контактными группами. Для коммутации напряжения переменного тока три группы контактов следует соединить параллельно, а четвертую использовать для переключения стабилитронов. Кнопка SB2 — такая же, как и SB1 или тумблер на два-три направления и ток 2. 5 А.

Трансформатор можно выполнить на любом стальном магни-топроводе с габаритной мощностью 90. 150 Вт. Использован трансформатор ТС-90 от телевизора «Каскад 225» (УСТ61-1). С трансформатора предварительно удалены все вторичные обмотки.

Обмотки II и III включенные параллельно, намотаны проводом ПЭВ-2 0,68 мм из расчета примерно 4,5 витка на 1 В. Они попарно должны содержать строго одинаковое число витков. Обмотки IV и V предназначены для питания низковольтного паяльника ЭПСН-12-25 Вт или аналогичного. Они намотаны проводом ПЭВ-2 диаметром 0,75 мм. Первичная обмотка трансформатора включена на напряжение 237 В, что снижает ток холостого хода трансформатора и, соответственно, повышает надёжность блока питания в целом.

Диоды VD1-VD4 размещаются на общем теплоотводе 150 см2 через изолирующие прокладки. Транзистор ѴТЗ устанавливается на ребристый или игольчатый радиатор площадью не менее 500 см2, транзистор ѴТ4 — на радиатор площадью 10 см2. Если длина провода от выв. 2 DA1 до R20 более 15 см, то необходимо применить экранированный провод.

Провода от выхода выпрямителя VD1-VD4 припаиваются непосредственно к выводам оксидных конденсаторов С4 и С5. К ним же припаивается отдельным проводом левый (по схеме) вывод резистора R2.

Стабилизатор блока питания представляет собой устройство с большим усилением и глубокими ООС, поэтому, при его монтаже следует придерживаться тех же правил, что и при монтаже устройств высококачественного звуковоспроизведения.

При эксплуатации блока питания нужно следить за тем, чтобы суммарная мощность потребления по всем вторичным обмоткам не превышала максимально допустимую для примененного трансформатора.

Также следует исключить подогрев трансформатором и радиатором транзистора ѴТЗ оксидных конденсаторов, особенно СЗ и С4. Если корпус будет типа «мини-башни», то транзистор Т1 следует разместить в верхней ее части, а мощный радиатор частично вынести за пределы корпуса, например, оформив его в виде задней стенки. Элементы налаживания устройства. R3 — чувствительность микроамперметра; R4 — верхний порог ограничения тока нагрузки; R19 и R21 — минимальное и максимальное напряжения диапазона 7. 18 В; R23 — тон звукового сигнала; R25 — громкость.

Литература: А. П. Кашкаров, А. Л. Бутов — Радиолюбителям схемы, Москва 2008

Лабораторный блок питания своими руками 0-30В 0-5А

лабораторный блок питания своими руками

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.

Лабораторный блок питания своими руками 0-30В 0-5А

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

лабораторный блок питания сборка

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

лабораторный блок питания плата

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.

плата лабораторного блока питания

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

лабораторный блок питания своими руками 0 30в

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.

лабораторный блок питания с регулировкой напряжения

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

лабораторный блок питания своими руками

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.

лабораторный блок питания 30в

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.

Читать еще:  Регулировка клапанов двигателя mr479qa джили мк

мощный лабораторный блок питания

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.

Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом.

Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.

лабораторный блок питания схема

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.

лабораторный блок питания 30в своими руками

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

лабораторный блок питания

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).

регулировка lm317 от нуля

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.

лабораторный блок питания своими руками

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.

лабораторный блок питания 0-30В

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.

лабораторный блок питания своими руками

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!

лабораторный блок питания своими руками

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.

Лабораторный блок питания с регулировкой тока и напряжения

Лабораторный блок питания может пригодится практически каждому радиолюбителю для отладки и работы с электроникой. В данной статье мы рассмотрим сборку лабораторного блока питания, схема которого довольно известна в сети интернет. Схема является довольно популярной, была собрана множеством радиолюбителей по всему миру. В виду её популярности, в Китае так же наладили производство кит-набора, с помощью которого можно спаять схему, немного сэкономив на времени при изготовлении печатной платы, и поиске компонентов. Я решил заказать этот набор, и посмотреть что из этого получится. В блоке питания имеется регулировка как по току, так и напряжению. Данный пост будет содержать минимум теории, и больше фото для показа что в итоге получилось.

Читать еще:  Порядок регулировки клапанов камминз 4isbe

Принципиальная схема блока питания:

Принципиальная схема блока питания

Схема найдена в интернете, некоторые компоненты на схеме выше заменены советскими аналогами, в целом схема идентична.

Сам набор с компонентами добрался в таком виде:

Перед началом сборки выяснилось что некоторые компоненты пришли ни тех номиналов. Что касается подобного рода посылок, то это довольно распространённая практика. Поэтому рекомендуется всегда проверять элементы перед сборкой. В моём случае шунтирующий резистор (R7) оказался 47 Ом, а должен быть 0.47 Ом. Кроме того операционники оказались с дефектом, и после сборки не регулировалось напряжение и ток. Всё исправилось заменой этих компонентов. Читал в интернете, у некоторых схема начинает работать сразу после сборки. У некоторых приходят с дефектами или неправильными номиналами элементов. Очевидно, мне попалось и то и другое, в общем с ситуацией разобрался, и плата собрана и работает.

На схеме так же имеется стабилизатор напряжения 7824, я решил заменить его на 7812, который будет выдавать 12 В для запитки куллера + индикатора напряжения и тока.

В качестве трансформатора временно решил использовать от старого бесперебойника. Плата вывозит нагрузку на 3А, однако легко дорабатывается некоторой заменой компонентов. После этого при необходимости можно повысить выдаваемый ток блоком питания. Протестировав схему, стало понятно, что радиатор на выходном транзисторе маловат в своих габаритах, и не справляется с рассеиванием тепла. После чего решил прикрутить транзистор на радиатор от старого 478-го процессора. Как положено, с использованием термопасты для лучшей проводимости, т.к. узел весьма показался мне уязвимым в вопросе перегрева.

Решил повесить нагрузку в пару ампер на блок питания, посмотреть как быстро будет греться радиатор на транзиcторе. Минуты две при такой нагрузке радиатор спокойно рассеивает температуру после чего уже требуется принудительное охлаждение. Решил немного доработать охлаждение радиатора, и вместо того, чтобы вентилятор жужал постоянно, сделал схему, которая будет включать его при пиковых нагрузках. В сети интернет есть схема, которая реализована за счёт необычной способности транзистора КТ315 менять свои свойства при смене температуры.

Схема регулятора оборотов вентилятора охлаждения:

Собрал эту схему довольно быстро, она так же популярна в сети интернет. Особенность этой схемы в том, что в качестве датчика выступает транзистор КТ315. Этот транзистор к счастью оказался под рукой. Что касается VT2 то я решил заменить его современным аналогом, т.к. в магазинах всё реже можно найти детали старой базы.

Самое время делать корпус для блока питания и собирать это всё дело в кучу. Т.к. под рукой оказался корпус от бесперебойника компьютера, решил попробовать затолкать в него все компоненты, а так же сделать более правильную «морду», с регуляторами индикаторами и тумблером.

Переменные резисторы решил заказать другие, т.к. регулировка с многооборотистым резистором гораздо плавнее. В ходе испытаний выяснилось что индикатор напряжения имеет погрешность 0,01В, а вот что касается тока, то там наблюдается нелинейность в измерении. Исправляется пайкой одной перемычки на плате (в сети много об этом есть постов). Крепёж под «бананы», а так же тумблер включения питания.

Вот такая тушка под корпус лабораторника, переднюю и заднюю панель я открутил, так как она не пригодится, и панели у прибора будут другие.

В качестве материала для панели решил взять гетинакс, толщиной 5 мм. Причина такого выбора в том что его легко обрабатывать, диэлектрик, да и оказался под рукой.

Отверстия сверлились свёрлами и отрезными дисками для бор машины. Процесс изготовления корпуса — творческий, а поэтому в моём случае затянуться на больше чем ожидалось).

Элементы на панели вырезанные из листа гетинакса не стыковались с отверстиями которые были на железном корпусе. Таким образом чтобы разместить элементы потребовалось так же немного подрезать сам металлический корпус.

Урезая корпус под нужды элементов управления, это его значительно ослабляет в плане жесткости. Я же стремился сделать его более надёжным и качественным. В итоге простая переделка перешла в фазу «глубокой» переделки, в ходе чего была срезана задняя панель полностью, и добавлены рёбра жесткости.

Для примерки первый крепёж был сделан что называется на «шару» для того чтобы немного прикинуть размещение элементов. В ходе чего было выяснено, что так же потребуется сделать дополнительную планку по центру, чтобы прикрутить к ней два радиатора, и пару схем.

Сделал всё как задумал, хоть и можно было проще затолкать как получиться, но хотелось сделать как виделось правильным. Оставил запас места под трансформатор большего размера. Сам трансформатор разместил по центру, для более правильной развесовки прибора, а так же рассеивания тепла. Радиатор разместил ближе к задней стенке где находится вентилятор кулера. Сама плата блока питания так же находится ближе к кулеру. Плата управления ближе к передней панели, и в таком положении, чтобы место в центральной части где находится трансформатор оставалась в запасе.

Немного творческого беспорядка, на пару дней, в итоге подогнал все элементы по местам, и спаял узлы в последствии. Радиатор изолировал от корпуса, в итоге были сделаны специальные посадочные площадки из гетинакса которые одной стороной крепились к корпусу другой к радиатору. Получился некий пазл, которой держал всё это дело прочно на своих местах.

После первой сборки и спайки самоё время проверить работоспособность прибора. После сборки прибор включился но регулировалось напряжение и ток. В итоге выяснилось, что многооборотистые резисторы были припаяны немного неправильно, и это дело быстро исправилось. В целом, всё практически готово. Датчик регулятора скорости вращения вентилятора (транзистор КТ315) так же был прикручен около выходного транзистора блока питания, который размещался на радиаторе. Таким образом он быстрее реагирует на смену температуры выходного транзистора не дожидаясь нагрева всего радиатора.

Регуляторы на переменные резисторы мне показались довольно габаритными для этой панели, поэтому ставить их пока не стал, и заказал другие специальные для данного типа резисторов.

Вот такой получился танк. На задней панели сделаны отверстия под для вентилятора, предохранитель, а так же гнездо питания на 220 В. Центральный контакт гнезда как и положено заземлил на корпус блока питания. Хотя в наших розетках и нету третей точки — заземления, но пускай будет хотя бы в приборе, на будущее.

Проводка в блоке так же была связана, чтобы не было механического воздействия на места припоя при эксплуатации прибора.

В дальнейшем прибор так же планируется дорабатываться и в плане мощности, и возможно немного по внешнему виду. А пока результат он выглядит таким вот образом.

Сама плата с базовыми элементами способна выдавать от 0 до 30 Вольт, с током от 0 до 3 Ампер. Осциллограммы к сожалению показать не могу, т.к. нет осциллографа под рукой. Конечно это не много, ну и не мало тоже. По этой причине в дальнейшем планируется доработка в сторону увеличения мощности, путем замены элементной базы, от трансформатора до транзисторов. Разумеется насколько это позволят сами дорожки платы.

  • ЛБП

htmaker Опубликована: 13.10.2019 0 1
Вознаградить Я собрал 0 Участие в конкурсе 0

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector