Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование подачи насоса

Регулирование подачи насоса.

Регулирование подачи насоса

Основной задачей регулирования подачи насоса является подача в сеть расхода Q(м 3 /ч), заданного определенным графиком. При этом характеристики насоса, такие как Н(напор), p(давление), N(мощность) и η(коэффициент полезного действия) имеют тенденцию изменяться.

Однако сеть трубопроводов и потребители накладывают на некоторые из параметров определенные условия. Например насосы должны создавать определенные потребителем расход и давление, отвечающее гидравлическим свойствам системы трубопроводов.

Содержание статьи

  • Дроссельное регулирование
  • Изменение частоты вращения
  • Установка поворотных направляющих лопастей
  • Видео по теме

Компрессоры в некоторых случаях работают на сеть с переменным Q, но должны обеспечить постоянное давление р (например, пневматический инструмент) в других случаях они работают с постоянным Q при переменном р.

Таким образом возможны различные варианты регулирования подачи. Самые актуальные способы регулирования подачи насоса рассмотрены в этой статье.

Дроссельное регулирование при постоянной частоте оборотов.

Предположим, что насос подключен так, как показано на схеме.

схема подключения

Отложим на графике характеристики напора, мощности и КПД центробежного насоса при постоянном числе оборотов.

На этом же графике изобразим характеристику трубопроводной сети, на которую работает насос. При этом считается, что регулирующий дроссель открыт полностью.

Установившийся режим работы центробежного агрегата возможен только если напор насоса равен напору, расходуемому в системе. Это равенство наблюдается в точке а.

В случае прикрытия дросселя на напорной трубе точка а передвинется по характеристике влево и займет положение а / , задав новые значения параметров Q / , H / , N / . дроссельное регулированиеДальнейшее перекрывание дросселя вызывает смещение характеристики трубопроводной системы ещё больше вверх, и точка а передвигается в точку а // , дающую значения параметров Q // , H // , N // и т.д.

Следовательно, дроссельное регулирование при постоянной частоте вращения достигается введением дополнительного гидравлического сопротивления в сеть трубопроводов машины.

Поскольку наибольшая подача достигается при полностью открытом дросселе (точка а), дроссельное регулирование применяют только с целью уменьшения подачи. Энергетическая эффективность такого регулирования низка, но благодаря своей простоте этот способ широко применяется.

При дроссельном регулировании центробежных машин, подающих жидкость, дроссель располагают на напорной трубе. Если расположить его на всасывающей трубе, то при глубоком регулировании может возникать кавитация.

Изменение частоты вращения вала

В тех случаях, когда имеется возможность изменять частоту вращения вала двигателя, приводящего в движение центробежную машину, целесообразно воспользоваться этим вариантом.

Насос подключен к трубопроводу так же, как и в предыдущей схеме и работает при частотах вращения n1, n2, n3, причем n1<n2<n3.

Перейдем к характеристике. Точки пересечения характеристик H(Q) насоса и характеристики трубопровода обозначены как a1, a2,a3,a4 и определяют режимы работы установки при различных частотах вращения.

частотное регулирование

По графику видно, что при изменении частоты вращения могут быть достигнуты различные подачи и напоры, причем с изменением частоты вращения – изменяются подача и напор. В отличие от предыдущего способа, этот способ дает возможность регулировать подачу в любом направлении.

Современные насосы, например насосы для отопления , уже оборудуются многоскоростными электродвигателями, позволяющими переключать насос с одной скорости на другую. Если же оборудовать центробежный агрегат инвертером — преобразователями частоты, то появится возможность плавно изменять частоту вращения, устанавливая любую подачу

Установка поворотных направляющих лопастей

Энергия, передаваемая потоку жидкости в центробежном агрегате, во многом зависит от условий входа на рабочие лопасти. Закручивание потока, поступающего в рабочее колесо, влияет на величину напора и при заданной характеристике трубопровода изменяет подачу машину.

Отсюда возникает возможность регулирования воздействия на поток на входе в насос с помощью особого лопастного направляющего аппарата. Такой направляющий аппарат может быть изготовлен в двух исполнениях: осевом и радиальном.

Осевой направляющий аппарат.

Осевой направляющий аппарат

Осевой направляющий аппарат состоит из лопаток Л с радиальными осями вращения: лопасти поворачиваются одновременно при помощи особого перестановочного кольца.

В зависимости от положения лопаток, поток на входе будет иметь радиальное направления – не встречать сопротивления, или при закрытии лопаток – расход Q=0. Промежуточные между этими двумя вариантами положения лопастей будут давать возможность регулировать подачу.

Радиальный направляющий аппарат.

Радиальный направляющий аппарат

Радиальный направляющий аппарат представляет собой круговую цилиндрическую решетку поворотных лопаток с осями, параллельными геометрической оси ротора машины. Такой аппарат требует радиального подвода потока жидкости к насосу, поэтому монтировать его в трубопровод менее удобно, чем предыдущий вариант.

Радиальный направляющий аппарат следует устанавливать в непосредственной близости от входа в колесо, только в этом случае достигается эффективное регулирование.

Если разместить его на некотором расстоянии от машины, то эффективность может быть низкой из-за быстрого торможения вращательного движения потока. Многочисленные опыты показали, что на регулирование подачи направляющим расходуется меньше энергии по сравнению с дросселем.

Видео по теме

В настоящее время регулирование подачи центробежного насоса осуществляется дросселированием и изменением частоты вращения.

Первый способ применяется в малых насосах, таких как насос для повышения давления, приводимых в движение короткозамкнутыми электродвигателями трехфазного тока.

Крупные промышленные насосы, приводимые в движение паровыми турбинами и специальными двигателями, регулируются изменением частоты вращения или смешанным способом(ступенчатое изменение частоты вращения и подрегулировка дросселем).

Дросселирование центробежных насосов во избежание явления кавитации допускается только на напорном трубопроводе.

Неисправности центробежных насосов.

При точном соблюдении инструкции можно избежать повреждений при работе насоса. Как разнообразны условия эксплуатации насосов, так и различны неисправности, появляющиеся во время их эксплуатации.
Очень трудно дать какие-либо конкретные рекомендации для выявления и устранения всякого рода повреждений. Очень редко причина повреждения содержится в самом насосе. Поэтому насос следует разбирать лишь тогда, когда другие меры не привели к устранению неисправности.

Ниже мы остановимся на некоторых основных условиях, которые следует соблюдать при эксплуатации центробежных насосов.

При неполном заполнении центробежный насос не подает жидкость или же подает ее с шумом.

Очень важно обеспечить полное заполнение насоса перед эксплуатацией. В этом случае необходимо открыть находящиеся на корпусе насоса воздуховыпускные устройства. Затем заполнить жидкостью насос и всасывающую трубу до тех пор, пока из них полностью не будет удален воздух.
Засорение всасывающего трубопровода, защитной сетки или рабочего колеса приводит к уменьшению напора. В некоторых случаях это может привести к разрыву сплошности потока на стороне всасывания насоса.
Закупоривание рабочего колеса можно предотвратить установкой во всасывающем трубопроводе защитных сеток, решеток, грубых и гравийных фильтров. Если при использовании насоса, несмотря на правильное его заполнение, не будет достигнута гарантированная подача, то вполне возможно, что не совпадает общая высота напора с параметрами насоса. Это можно проверить при помощи манометров или вакуумметров, установленных на всасывающем и напорном патрубках. Если по показаниям приборов преодолеваемая высота напора больше, чем напор насоса то необходимо увеличить, если возможно, частоту вращения или установить более крупное рабочее колесо.

Если преодолеваемая высота напора меньше, то по характеристике центробежных насосов (кроме пропеллерных) происходит увеличение подачи и мощности на валу насоса. Именно в этом случае возникает опасность перегрузки приводного двигателя.
Источник этого несоответствия можно устранить, уменьшив режим работы при помощи задвижки на напорном трубопроводе.
Особое внимание следует обращать на соответствие направления вращения вала насоса заданному. Неправильное направление вращения приводит к неисправностям насоса в результате ослабления затяжки рабочего колеса или гайки на валу, а это в свою очередь вызывает повреждение элементов корпуса насоса. Данное явление приводит также к заклиниванию вала насоса.

Недопустимые условия со стороны всасывающего патрубка часто являются причиной поломок при эксплуатации насосов.

Если превысить допустимую вакуумметрическую высоту всасывания или максимальную геометрическую высоту всасывания насоса, то это может повлечь за собой разрыв сплошности потока или по меньшей мере вызвать кавитацию, а также сильное снижение мощности. Поэтому при работе насоса необходимо следить за тем, чтобы не была превышена допустимая высота всасывания (кавитационный запас).
Максимальная высота всасывания сильно зависит от температуры перекачиваемой жидкости, от потерь на трение и изгибы трубопровода, а также от скорости (диаметра) во всасывающем трубопроводе.
Повышение температуры перекачиваемой жидкости уменьшает высоту всасывания, поскольку с увеличением температуры увеличивается давление парообразования.
Чтобы сократить потери на трение и изгибы со стороны всасывающего трубопровода, его надо делать коротким и широким, без лишних вставных элементов. Забитая приемная сетка и трудно открывающийся клапан сильно увеличивают потери энергии. В связи с тем, что потери на трение и скоростной напор зависят от скорости во всасывающем трубопроводе, в лопастных насосах диаметр всасывающего патрубка по сравнению с диаметром напорного, как правило, больше. Если нельзя обойтись без излишне длинного подающего трубопровода, то нужно увеличить его номинальный внутренний диаметр по сравнению с диаметром всасывающего патрубка.

Читать еще:  Сузуки бандит 400 регулировка клапанов красноголового

Чтобы избежать образования воздушных мешков в насосе необходимо выполнять эксцентричный переходник.
Избыточное давление на входе, потери и скоростной напор, зависят от изменяющегося противодавления и подачи соответственно характеристике насоса. Гарантийную высоту всасывания указывают лишь для режима работы, приведенного в паспорте насоса.
Если уже на недогрузочных режимах имеет место повышение максимально допустимой высоты всасывания до определенных пределов, то при известных условиях при увеличении подачи допустимая высота будет значительно превышена. Если насос заказывают со слишком большим запасом по напору, то в эксплуатации он будет не очень надежен.
При высоком давлении парообразования или когда оно равно давлению в емкости следует предусмотреть избыточное давление на входе. Подпор должен быть больше, чем возникающие на пути до насоса потери на трение. Величина подпора зависит как от температуры перекачиваемой жидкости, так и от подачи и частоты вращения, и необходимо ее всегда выдерживать, чтобы гарантировать безупречную работу насоса. Лучше обеспечивать необходимый подпор, увеличивая давление в резервуаре путем образования воздушной подушки.
Если нельзя, по определенным причинам, обойтись без прокладки длинных труб, то необходимо уложить всасывающую линию с постоянным наклоном в сторону насоса для предотвращения образования воздушных пробок. Если это требование по каким-то причинам неосуществимо, то следует обеспечить отсос воздуха в наивысшей точке всасывающего трубопровода. Чтобы нигде не было подсоса воздуха, всасывающая труба в любом случае должна быть герметичной. Конец трубы должен быть погружен в жидкость минимум на 0,8м, чтобы недопустить возможного подсоса воздуха.
Если перекачиваемая жидкость содержит воздух или газ, то следует удалять их при помощи деаэратора или вакуумного насоса.

Напорный трубопровод в любом случае следует оснастить запирающей задвижкой (кроме полуавтоматических установок и осевых насосов), поскольку центробежные насосы включают и останавливают в основном при закрытой задвижке на напорном трубопроводе. Это запирающее устройство необходимо для регулирования подачи, а также для беспрепятственного отключения насоса от напорной магистрали во время ремонта. При напорах свыше 10,0-15,0м необходимо установить обратный клапан, который располагают между напорным патрубком и задвижкой на напорном трубопроводе. Этот клапан препятствует обратному току перекачиваемой жидкости при резкой остановке насоса и защищает всасывающий трубопровод от гидравлического удара. При поломке обратного клапана или при его отсутствии возникает опасность обратного вращения вала насоса, что может привести к тяжелым повреждениям: разрушению агрегата, отсутствию смазки, ослаблению крепления вращаяющихся и неподвижных деталей. В связи с этим надо следить за работоспособностью обратного клапана.

Очень частым источником повреждений центробежных насосов является плохой уход и обслуживание сальников.

Долговечность набивки сальника зависит в основном от плавной работы насоса.
Неравномерное вращение или работа вала с биениями вызывает дополнительные нагрузки на сальниковую набивку.
Чрезмерное подтягивание крышки сальника приводит к сухому трению и выгоранию сальниковой набивки. Чтобы набивка выполняла свое уплотняющее назначение, она должна быть достаточно влажной. Капельное протекание через сальниковую набивку говорит о его нормальной работе. Долговечная работа втулки сальника снижается из-за быстрого износа при недостаточно влажной набивке и сильной затяжке сальника. При возникновении сильного нагревания может произойти выход втулки сальника из строя, если втулка и вал насоса изготовлены из материалов, имеющих различные коэффициенты линейного расширения.
Нз практике очень часто допускают ошибку, заменяя в сальнике не все уплотнительные кольца. Кольца, оставшиеся в сальниковой набивке, очень сухие и твердые, поскольку снижающие трение компоненты колец полностью выработаны. Изменение формы уплотнительных колец с помощью молотка недопустимо, так как приводит к, уменьшению упругости набивки и этим самым снижает ее работоспособность.

При эксплуатации торцовых уплотнений особенно важна спокойная работа вала насоса. Если вал работает неравномерно или с биениями, то на уплотнительных поверхностях появляются следы интенсивного изнашивания, что приводит к преждевременной потере торцовым уплотнением своих уплотнительных свойств.

Некачественное центрирование приводного двигателя и насоса вызывает усиленное изнашивание сальников и подшипников. Центробежные насосы в большинстве случаев непосредственно соединяют с приводным двигателем. Применяемые упругие муфты должны передавать только крутящий момент от привода к насосу, но не компенсировать погрешности монтажа. Поэтому необходимо устанавливать валы на одинаковой высоте и обеспечивать безупречную соосность.
Подтягивание трубопроводов к насосу, неперпендикулярность подсоединения трубопроводов к патрубкам насоса, недостаточность опоры трубопроводов при монтаже недопустимы. Вследствие чрезмерного подтягивания трубопроводов к насосному агрегату может произойти излом фланцев патрубков, разрушение муфты, работы вала с вибрацией, а все это нарушает работу концевых уплотнений.

Energy
education

Теплопроводность

Нагнетателем называется машина преобразующая механическую энергию в энергию потока жидкости. Нагнетателем подразделяются на насосы, вентиляторы и компрессоры. Насос перемещает капельные жидкости. Вентилятор газы при малых перепадах давлений до 15 КПа, а компрессор при больших перепадах давлений.

6. Регулирование насоса

Кроме того, иногда нет необходимости выбирать насос, соответствующий оптимальной рабочей точке, так как требования системы постоянно меняются или с течением времени меняется характеристика системы. Поэтому лучшим вариантом может быть регулирование параметров насоса таким образом, чтобы они обеспечивали эксплутационные потребности системы. Наиболее популярные методы изменения параметров насоса следующие:

  • Дроссельное регулирование;
  • Регулирование байпасом;
  • Изменение диаметра рабочего колеса;
  • Регулирование скорости.

Метод регулирования выбирается исходя из величины начальных инвестиций в оборудование и расходов на эксплуатацию. В течение срока службы системы можно опробовать все методы регулирования, кроме одного — коррекции диаметра рабочего колеса. Очень часто для системы используется переразмеренный насос, мощность которого намного выше требуемой, и, следовательно, необходимо ограничить его производительность — прежде всего расход, и в некоторых случаях — максимальный напор.

Дроссельное регулирование. Задвижка устанавливается последовательно после насоса, позволяя регулировать рабочую точку. Она увеличивает сопротивление системы и снижает в ней расход. Без задвижки расход будет $Q_2$. С задвижкой, установленной последовательно с насосом, расход понижается до значения $Q_1$. Задвижки могут использоваться для ограничения максимального расхода. Например, расход никогда не будет выше значения $Q_3$, даже если характеристика системы будет абсолютно пологой, что означает отсутствие в системе какого-либо сопротивления. При регулировании параметров дроссельным методом насос будет обеспечивать более высокий напор, чем необходимо для данной системы. При замене насоса с задвижкой на меньший насос, последний обеспечит желаемый расход $Q_1$, но при более низком напоре и, следовательно, с меньшим энергопотреблением.

Дроссельное регулирование.Дроссельное регулирование.

Регулирование байпасом. Задвижка байпасного (перепускного) трубопровода устанавливается параллельно с насосом и используется для регулирования его параметров. По сравнению с обычной задвижкой, устанавливаемой за насосом, байпасирование обеспечит определенный минимальный расход $Q_<бп>$ насоса, независимо от характеристик системы. Расход насоса $Q_Н$ равен сумме расхода системы $Q_С$ и расхода через байпасный трубопровод $Q_<бп>$. Задвижка на байпасе будет обеспечивать максимально допустимый напор в системе $Н_<макс>$. Даже если требуемое значение расхода в системе равно нулю, насос никогда не будет работать на закрытую задвижку. Как и в случае с дроссельным регулированием, требуемое значение расхода системы $Q_С$ может быть обеспечено меньшим насосом и без перепуска; в результате расход через насос будет ниже и, следовательно, потребление электроэнергии тоже снизится.

Регулирование байпасом.Регулирование байпасом.

Коррекция диаметра рабочего колеса. Другим способом регулирования параметров центробежного насоса является коррекция диаметра рабочего колеса: при его уменьшении происходит снижение рабочих характеристик. Очевидно, что уменьшение диаметра рабочего колеса не может быть произведено во время работы насоса. По сравнению с дроссельным и байпасным методами регулирования, которые можно проводить во время работы насоса, коррекция диаметра рабочего колеса должна быть выполнена до монтажа насоса или во время проведения ремонтных работ.

Читать еще:  Партнер 3816 регулировка карбюратора

$$frac>> = left(frac>>right)^2;$$ $$frac>> = left(frac>>right)^2;$$ $$frac>> = left(frac>>right)^4.$$

Коррекция диаметра рабочего колес.Коррекция диаметра рабочего колес.

Последний способ регулирования — регулирование скорости. Регулирование скорости с помощью преобразователя частоты, вне всяких сомнений, является наиболее эффективным способом регулирования характеристик насоса. Расход насоса $Q$ прямо пропорционален его скорости вращения $n$. Напор насоса $Н$ прямо пропорционален квадрату скорости вращения, а мощность его прямо пропорциональна кубу скорости вращения. На практике снижение скорости вращения насоса приводит к уменьшению его КПД.

Регулирование скорости вращения.Регулирование скорости вращения.

Сравнение методов регулирования.

Сравнение методов регулирования.Сравнение методов регулирования.

Регулирование по постоянному давлению. Насос должен подавать воду из резервуара в различные части здания. Требования к расходу воды в данном случае будут постоянно меняться, следовательно, и характеристика системы будет меняться в соответствии с потребным расходом. Для экономии энергии и удобства потребителя необходимо, чтобы в системе было постоянное давление. Решением в этом случае будет установка регулируемого насоса с PI-регулятором. PI-регулятор сравнивает установленное значение давления руст с фактическим значением $p_1$, измеренным с помощью датчика давления РТ. Если же фактическое давление выше, чем установленное значение, PI-регулятор снижает скорость насоса и, следовательно, его параметры, до тех пор, пока не установится равенство $p_1 = p_<уст>$. PI-регулятор изменяет скорость от значения $n_

$ до $n_

$, гарантируя при этом, что давление на выходе системы $p_1 = p_<уст>$. Такая насосная система гарантирует постоянное давление в диапазоне расхода от $0$ до $Q_<макс>$. Давление воды в точке водоразбора не зависит от ее уровня $h$ в резервуаре. Если происходит изменение уровня воды $h$, PI-регулятор изменяет скорость насоса таким образом, что давление $p_1$ всегда соответствует установленному значению.

Регулирование по постоянному давлению.Регулирование по постоянному давлению.

Регулирование по постоянной температуре. Изменение параметров системы с помощью регулирования скорости насоса используется во многих областях промышленности. На рисунке представлена система формовочной машины, которая должна непрерывно охлаждаться водой для получения продукта высокого качества. Эта машина охлаждается водой с температурой 15°С, поступающей из холодильной установки. Чтобы данная формовочная машина работала качественно и охлаждалась достаточным образом, температура в обратном трубопроводе должна поддерживаться на постоянном уровне — $t_ <обр>= 20$°С. Для этого необходимо установить регулируемый по температуре насос, управляемый с помощью PI-регулятора. PI-регулятор сравнивает установленную температуру $t_<уст>$ с фактической температурой в обратном трубопроводе $t_<обр>$, которая измеряется с помощью датчика температуры ТТ. Такая система имеет фиксированную характеристику, и, следовательно, рабочая точка насоса находится на характеристике между значениями расхода $Q_<мин>$ и $Q_<макс>$. Чем выше потери тепла в установке, тем больший расход холодной воды необходим для поддержания температуры воды в обратном трубопроводе на уровне 20°С.

Регулирование по постоянной температуре.Регулирование по постоянной температуре.

Регулирование по постоянному перепаду давления в циркуляционной системе. Регулируемые насосы широко используются в циркуляционных (закрытых) системах. Если система оснащена регулируемыми по перепаду давления циркуляционными насосами, она будет обладать определенными преимуществами. На рисунке представлена система обогрева, в которую входит теплообменник, где вода в системе нагревается и доставляется к трем потребителям (например, радиаторам) с помощью регулируемого насоса. Регулировочный вентиль соединен с каждым радиатором последовательно для регулирования расхода через радиатор в зависимости от того, какая температура необходима потребителю. Насос регулируется по постоянному перепаду давления, измеряемому на насосе. Это означает, что система обеспечивает постоянный перепад давления на насосе в Q-диапазоне от $0$ до $Q_<макс>$.

Регулирование по постоянному перепаду давления в циркуляционной системе.Регулирование по постоянному перепаду давления в циркуляционной системе.

Применение насосов со встроенным преобразователем частоты является оптимальным решением во многих производственных отраслях.

Преобразователь частоты.Преобразователь частоты.

Стоимость жизненного цикла насоса — это выражение, определяющее общую стоимость насоса на протяжении его срока службы: сколько стоит покупка, установка, работа, обслуживание, утилизация и т.д. В абсолютном большинстве случаев энергопотребление является основной составляющей стоимости жизненного цикла насосной системы, если насос работает более чем 2000 часов в год.

Стоимость жизненного цикла насоса.Стоимость жизненного цикла насоса.

Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.

Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.Фактически около 20% от мирового потребления электроэнергии используется в насосных системах.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

Промышленные насосы

В практике эксплуатации насосов нередко приходится прибегать к регулированию их параметров, главным образом подачи, реже — напора. Так, например, режим работы мелиоративных насосных станций диктуется графиком водоподачи, имеющим значительные колебания во времени и течение поливного сезона, а иногда и в течение суток. Этим вызывается необходимость регулирования подачи насосной станции. Регулирование подачи может также иметь место на насосных станциях городского водоснабжения, на гидроаккумуляторных установках, на установках для перекачки нефти, на циркуляционных и питательных насосах теплоэлектростанций и т. п.

Под регулированием насоса понимают процесс произвольного изменения его подачи для обеспечения требуемой ее величины.

Насос и внешняя сеть образуют единую систему, равновесное состояние которой определяется материальным и энергетическим балансом. Материальный баланс выражается условием равенства подачи насоса расходу во внешней сети, энергетический — равенством напора насоса напору, потребляемому сетью. Графически условие материального и энергетического баланса системы выражается точкой пересечения характеристик насоса и сети. При данных характеристиках насоса и сети существует только одна точка, отвечающая условиям устойчивого равновесия. Величина водопотребления, как правило, изменяется во времени, в соответствии с чем должна перемещаться рабочая точка системы. С этой целью необходимо регулировать подачу насоса.

В связи с тем, что рабочая точка системы определяется характеристиками как насоса, так и сети, то регулировать подачу можно за счет изменения характеристики сети (количественный метод) или за счет изменения характеристики насоса (качественный метод). Изменение подачи и напора насосной установки за счет изменения характеристики сети можно добиться изменением статической составляющей сопротивления системы (геометрической высоты нагнетания или всасывания, давления над поверхностью жидкости в приемном резервуаре), изменением гидравлического сопротивления движению жидкости во всасывающем или напорном трубопроводе, изменением схемы сети (например, за счет введения байпасной линии).

Качественно работа системы «насос-сеть» регулируется изменением частоты вращения рабочего колеса насоса, геометрии проточных каналов насоса и кинематики потока на входе в рабочее колесо.

Существуют также комбинированные способы регулирования, при которых изменение характеристики сети и изменение характеристики насоса происходят одновременно и взаимосвязано.

  • дросселирование напорной стороны насоса;
  • дросселирование всасывающей стороны насоса;
  • перепуск (байпасирование);
  • сброс части поднятого количества воды в нижний бьеф;
  • впуск воздуха во всасывающую трубу насоса;
  • авторегулирование (изменение статической составляющей напора);
  • комбинацией включения параллельно/последовательно работающих ступеней в многосекционных насосах;
  • применение баков-гидроаккумуляторов;
  • применение ячеистого успокоителя в аванкамере насосной станции;
  • применение перепускного трубопровода, соединяющего нитки напорных коммуникаций крупных насосных станций;
  • изменение числа параллельно работающих насосов (применение разменных агрегатов).
  • изменение частоты вращения рабочего колеса;
  • изменение угла установки лопастей направляющего аппарата на входе в рабочее колесо насоса;
  • изменение угла установки лопастей направляющего аппарата на выходе из рабочего колеса насоса;
  • изменение ширины рабочего колеса;
  • изменение степени открытия поперечного сечения каналов рабочего колеса;
  • изменение угла установки лопастей рабочего колеса;
  • саморегулирование;
  • обточка рабочего колеса.
  • саморегулирование с перепуском;
  • перепуск по малому контуру с закруткой потока перед рабочим колесом;
  • дросселирование с перепуском;
  • перепуск с подкруткой;
  • дросселирование и изменение частоты вращения рабочего колеса;
  • комбинация лопастного и водоструйного насосов и другие.

Классификация способов регулирования подачи

  1. Регулирование производится только изменением характеристики насоса.
  2. Изменение характеристики сети, а характеристика насоса остается неизменной.
  3. Изменение характеристики насоса и сети.

Автоматическое регулирование может быть зависимым и независимым. Зависимое, или программное, регулирование считается наиболее совершенным. Заданный параметр при автоматическом регулировании должен меняться по определенному заранее установленному графику.

Различают также непрерывное или прерывное (позиционное) регулирование процесса.

При позиционном прерывном регулировании подача воды то прекращается, то вновь восстанавливается.

При непрерывном регулировании регулятор все время поддерживает заданную величину параметра (давления, расхода) – показателя регулирования. Всякое изменение этой величины воспринимается чувствительным элементом измерительной системы и полученная информация о рассогласовании передается на исполнительный элемент регулятора.

Изменение характеристик насоса можно сделать постоянным (долговременным) или текущим.

При постоянном (долговременном) регулировании насос переводится в новый режим работы на достаточно длительный срок. Такое регулирование выполнить проще, чем регулировать подачу и напор в процессе работы системы.

Под текущим регулированием подразумевается непрерывное изменение характеристики Q–H в процессе работы установки в зависимости от поступления жидкости к насосу или потребления жидкости в системе.

Регулирование центробежных насосов

При рассмотрении характеристики насосной установки было выяснено, что гидравлические величины насоса изменяются в зависимости от расхода в системе трубопроводов. Насос и внешняя сеть составляют единую систему, установившийся режим работы которой возможен лишь при определенных условиях, когда соблюдается равенство расходов через насос и сеть при одном и том же напоре. Этому соответствует одна рабочая точка.

Между тем величина расхода изменяется по времени в соответствии с чем должна перемещаться и рабочая точка насосной установки. Для этого необходимо принудительно изменять характеристику насоса или сети. Процесс изменения характеристики сети или насоса для обеспечения заданного расхода называется регулированием.

1) изменением характеристики трубопровода путем частичного перекрытия его задвижкой,

2) изменением характеристики насоса путем перехода на другое число оборотов,

3) изменением характеристики путем поворота лопаток рабочего колеса или направляющего аппарата.

При эксплуатации водопроводных и канализационных насосных станций применяются первые два способа регулирования.

1 — Дроссельное регулирование позволяет изменить расход с помощью задвижки, расположенной на напорной линии в непосредственной близости от насоса. Этот способ наиболее прост, так как не требует внесения в насосную установку дополнительных устройств. Вместе с тем он экономически невыгоден, так как часть напора теряется на преодоление сопротивления задвижки. Дросселирование с помощью задвижки, установленной на всасывающей трубе, не рекомендуется, так как это может вызвать кавитацию. Каждому положению диска задвижки соответствует новая характеристика трубопровода (рис. 52),

Регулирование центробежных насосов

Рис. 52. Регулирование насоса с помощью задвижки.

поэтому рабочая точка перемещается по характеристике насоса. Регулирование напорной задвижкой применяется на насосных станциях первого подъема при колебаниях уровня воды в источнике.

2 — Регулирование путем изменения числа оборотов насоса не влечет значительного изменения к. п. д. Оно осуществимо при применении двигателя с плавным изменением числа оборотов или путем введения между двигателем и насосом специальных устройств.

В подавляющем большинстве случаев насосные станции и установки оборудованы электродвигателями переменного тока, работающими с постоянным числом оборотов. В связи с этим регулирование центробежных насосов путем изменения числа оборотов не получило широкого распространения и применяется только в тех случаях, когда насос приводится двигателем, работающим с различным числом оборотов.

При этом способе регулирования изменяется характеристика насоса при неизменной характеристике трубопровода. Характеристика насоса изменяется так, что рабочая точка перемещается по характеристике трубопровода. Рассмотрим в общих чертах двигатели и устройства, позволяющие осуществить регулирование насосов изменением числа оборотов.

Электродвигатели постоянного тока позволяют плавно изменять число оборотов посредством реостата и при наличии общей электросети постоянного тока весьма удобны для регулирования насосов. Однако электродвигатели постоянного тока в настоящее время для этих целей почти не применяются из-за необходимости в установке преобразователей при питании от сети переменного тока.

Паровые и газовые турбины пригодны для регулирования числа оборотов центробежных насосов, так как при незначительном изменении числа оборотов, как это обычно требуется для насосов, к. п. д. этих двигателей изменяется незначительно. Однако турбины на насосных станциях применяются редко в связи с громоздкостью вспомогательных устройств и трудностью обслуживания в условиях насосной станции.

Они находят применение лишь на крупных насосных станциях, предназначенных для питания больших промышленных предприятий, тепловых и атомных электростанций. В некоторых случаях турбины применяются также в качестве резерва на случай выхода из строя общей энергосистемы.

Двигатели внутреннего сгорания могут работать с различным числом оборотов, что позволяет применять их в качестве регулирующего привода насосов. Для этих двигателей не требуется специальной котельной, так как топливо и воздух вводятся непосредственно в цилиндр двигателя, где происходит горение.

Наибольшее распространение в качестве основных двигателей на насосных станциях получили электродвигатели переменного тока, несмотря на невозможность регулирования числа оборотов без специальных устройств.

На водопроводных и канализационных насосных станциях применяются асинхронные и синхронные электродвигатели переменного тока. Из них наибольшее применение имеют асинхронные машины, так как они не требуют сложных пусковых устройств.

При небольшой мощности насосов применяют короткозамкнутые электродвигатели, а при мощности свыше 20 квт рекомендуется применять асинхронные электродвигатели с фазным ротором. Разница между ними состоит в том, что обмотка короткозамкнутого двигателя замкнута внутри ротора, а у двигателей с фазным ротором обмотка соединяется с наружным пусковым реостатом через три контактные кольца с щетками.

Перед пуском такого двигателя в цепь ротора вводится дополнительное сопротивление, благодаря чему при включении увеличивается пусковой момент, а число оборотов нарастает постепенно, без значительного увеличения пускового тока. При достижении нормальных оборотов сопротивление выводится из цепи ротора, а обмотка его закорачивается.

Применение синхронных электродвигателей требует установки сложных пусковых устройств, поэтому синхронные электродвигатели применяют для насосных агрегатов мощностью более 100 квт. Трехфазные асинхронные и синхронные электродвигатели при работе без специальных устройств дают постоянное число оборотов. Однако с применением специальных устройств эти машины можно регулировать в необходимых для насоса пределах.

При приводе насосов от электродвигателей переменного тока возможны следующие способы изменения числа оборотов:

  • изменение числа оборотов двигателя введением сопротивления в цепь ротора или переключением обмотки на различное число пар полюсов;
  • изменение числа оборотов насоса при постоянном числе оборотов двигателя путем включения между их валами гидромуфты или специальной коробки передач.

Гидромуфта облегчает пуск центробежного насоса и позволяет плавно изменять число оборотов насоса при неизменном числе оборотов двигателя. В гидромуфте мощность передается к насосу через жидкость (обычно масло), циркулирующую в полости между двумя полуторами, снабженными лопатками (рис. 53).

alt

Рис. 53. Схема гидравлической муфты: 1- ведущий вал; 2- ведомый вал; 3- насосное колесо; 4- турбинное колесо; 5- корпус гидромуфты.

Ведущий полутор 3 (насосное колесо) соединен с валом двигателя, а ведомый (турбинное колесо) — с насосом. При вращении ведущего вала масло, находящееся в полости гидромуфты, двигается в направлении, указанном стрелками, и приводит во вращение турбинное колесо 4.

Таким образом, энергия передается от ведущего вала к ведомому через масло, причем оба вала будут вращаться с различным числом оборотов. Изменяя наполнение гидромуфты рабочей жидкостью, можно плавно регулировать число оборотов насоса при неизменном числе оборотов электродвигателя переменного тока. Наличие гидромуфты дает возможность включения и выключения центробежного насоса с открытой задвижкой.

«Видео о компании»

«Благодарим за посещение сайта компании «Горный родник». Будем рады подготовить
для Вас необходимую техническую документацию для проектирования. И в сжатые
сроки изготовим блочные очистные сооружения и современные комплектные насосные
станции «Родник» для жилого района или промышленного объекта.»

Для получения технического описания и стоимости оборудования заполните опросный лист

Скачать опросный лист на водопроводные и пожарные насосные станции «Родник» Скачать опросный лист

Скачать опросный лист на канализационные насосные станции «Родник» Скачать опросный лист

Скачать опросный лист на ливневые очистные сооружения Скачать опросный лист

Скачать опросный лист на биологические очистные сооружения Скачать опросный лист

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector