Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цифровой регулятор возбуждения синхронного генератора АНИКРОН БГ-08

Цифровой регулятор возбуждения синхронного генератора АНИКРОН БГ-08

Цифровой регулятор возбуждения АНИКРОН БГ предназначен для питания обмотки возбуждения синхронных генераторов автоматически регулируемым выпрямленным током.

Технические характеристики:

Технические особенности:

  • включение в сеть методом точной синхронизации;
  • включение в сеть методом самосинхронизации (при необходимости);
  • подгонку частоты напряжения генератора и включение высоковольтного выключателя;
  • форсирование напряжения возбуждения с заданной кратностью (не менее 2) при нарушениях в энергосистеме, вызывающих снижение напряжения на шинах станции;
  • разгрузку по реактивной мощности;
  • разгрузку по активной мощности;
  • поддержание напряжения генератора в точке регулирования с точностью не хуже ±0,2 % от заданной статической характеристики;
  • устойчивую работу в переходных и аварийных режимах (набросы и сбросы нагрузки, короткие замыкания);
  • безударный переход с блока регулирования на резервный при отказе основного блока (без изменения режима работы генератора);
  • дистанционное изменение уставки АРВ;
  • регулирование тока возбуждения генератора по отклонению и производной напряжения генератора, по отклонению и производной частоты напряжения генератора, по производной тока возбуждения генератора;
  • ограничение перегрузки по току возбуждения по время-зависимой характеристике;
  • развозбуждение при нарушениях в энергосистеме, вызывающих увеличение напряжения на шинах станции;
  • работу в режиме недовозбуждения;
  • ограничение потребляемой реактивной мощности;
  • гашение поля в аварийных режимах;
  • обеспечение электроторможения гидроагрегата (если предусмотрено проектом);
  • отображение осциллограмм и сервисной информации на сенсорном ЖК-дисплее;
  • синхронизацию с внешним источником времени;
  • ведение протокола событий с расширенным объемом записей.

Перечень защит:

  1. Защита ротора от перенапряжений.
  2. Защита от короткого замыкания в цепях выпрямленного напряжения.
  3. Максимальная токовая защита.
  4. Защита от повышения напряжения статора в режиме холостого хода.
  5. Защита от асимметрии фазных токов.
  6. Защита при отказе силовой части (тиристорного моста /усилителя мощности), в том числе от внутренних КЗ.
  7. Защита от перегрева ротора, возбудителя.
  8. Защита от неуспешного начального возбуждения.
  9. Защита при отказе обоих каналов регулирования.
  10. Система контроля и самотестирования основных блоков системы возбуждения.

Петербургский Международный Газовый Форум — ключевое событие в газовой отрасли России. Данное мероприятие ежегодно собирает более 5000 делегатов и более 30 000 посетителей из более, чем 50 стран.

В этом году форум проходил в юбилейный 10-ый раз и собрал невероятное количество делегатов и экспонентов со всей России и стран СНГ.

С 5 по 8 октября НПО «Цифровые регуляторы» примет участие в X Петербургском международном газовом форуме 2021.

Петербургский Международный Газовый Форум является ключевым событием в газовой отрасли России. Данное мероприятие ежегодно собирает более 5000 делегатов и более 30 000 посетителей из более, чем 50 стран.

Регулятор напряжения автомобильного синхронного генератора с когтеобразным ротором

ЭМС предназначена для питания бортовых потребителей автомобилей постоянным током, напряжением 14 В, суммарной мощностью не более 1 кВт.

Тип электрической машины

Синхронный генератор со встроенным выпрямителем, независимым возбуждением, когтеобразной (клювообразной) конструкцией ротора.

– Составить структурную схему ЭМС. Дать краткое описание ЭМС в целом и её элементов (принцип действия, конструкцию, статические характеристики). Исходя из назначения ЭМС, руководствуясь соответствующим ГОСТ, определить условия её работы.

– Используя принципиальную схему электронного преобразователя (ЭП) описать его принцип действия, привести диаграммы процессов поясняющие его работу.

– Составить компьютерную модель ЭП.

– С помощью компьютерной модели провести необходимые, для выбора элементной базы ЭП расчёты токов, напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах.

– Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор

ВВЕДЕНИЕ

Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, которым является генератор. Конечно, помимо генератора в автомобилях есть ещё один источник электроэнергии — аккумуляторная батарея, однако в её задачи входит только питание стартера в моменты пуска ДВС и кратковременное снабжение маломощных потребителей.

В данном расчётном задании рассматривается автомобильная система электроснабжения, в основе которой лежит синхронный генератор независимого возбуждения с когтеобразным (клювообразным) ротором. Генератор приводится в движение ременной передачей от коленчатого вала ДВС. В данный момент, это самая распространённая конструкция, применяемая на автомобилях.

Глава 1. ОБЩЕЕ ОПИСАНИЕ ЭМС И ПРИНЦИП ЕЕ ДЕЙСТВИЯ

1.1 Функциональные задачи, выполняемые ЭМС

Рассматриваемая электромеханическая система (ЭМС) – это автономная система электроснабжения постоянного тока на базе синхронного генератора с независимым возбуждением. Она предназначена для питания электрической энергией бортовых потребителей автомобиля общей мощностью 1 кВт, напря-жением 14 В постоянного тока. Выработку электроэнергии в данной системе осуществляет двигатель внутреннего сгорания (ДВС).

1.2 Функциональная схема ЭМС

Функциональная схема рассматриваемой ЭМС представлена на рис. 1

Рис. 1. Функциональная схема ЭМС

В состав приведённой на рис. 1 ЭМС входят следующие устройства:

двигатель внутреннего сгорания (ДВС);

генератор с электромагнитным возбуждением (Г);

датчик напряжения (ДН);

1.3 Принцип действия системы в целом. Характеристики системы

Принцип действия электромеханической системы основан на преобразовании механической энергии в электрическую с заданным качеством. Рассмотрим его подробнее.

Генератор, приводимый в движение через ременную передачу от ДВС, вырабатывает электрическую энергию. Наводимая в обмотках генератора ЭДС описывается следующей формулой:

Из неё видно, что значение напряжения на выходе генератора прямо пропорционально частоте вращения ротора генератора и току в обмотке возбуждения. Так как обороты генератора нестабильны, а напряжение на нагрузке должно быть неизменным, в систему введён датчик напряжения и регулятор тока обмотки возбуждения. Как правило, датчик напряжения встроен в регулятор, такое устройство называют регулятором напряжения. Выпрямитель преобразует переменное напряжение выдаваемое генератором в постоянное. Это напряжение и подаётся на нагрузку. Любое отклонение напряжения на нагрузке система подавляет увеличивая или снижая ток в обмотке возбуждения генератора. Регулирование тока в обмотке возбуждения осуществляет силовой транзистор управляемый микроконтроллером по принципу ШИМ.

Главной особенностью рассматриваемой системы является то, что от привода (ДВС) не требуется постоянство частоты вращения. Величина напряжения на нагрузке может отклоняться на ±0,15 В от номинального значения (установлено техническими данными генератора).

Частота вращения вала генератора, при которой его напряжение U достигает номинального значения, получила название частоты вращения холостого хода n х или частоты начала отдачи мощности.

1.4 Основные технические данные рассматриваемой ЭМС

а) Параметры выходного напряжения: постоянное 14В. Номинальная мощность нагрузки – 1 кВт;

б) Условия эксплуатации:

температура окружающего воздуха от –40 С до +45 С при относительной влажности до 90% при 25 С;

высота над уровнем моря до 4000 м;

в) Максимальное отклонение напряжения при изменении тока нагрузки в пределах от 0,1 I н до 0,9 I н ±0,25 В;

г) Точность регулируемого напряжения ±0,1 В при изменении частоты вращения вала генератора в пределах 2000-5000 об/мин;

д) Регулируемое напряжение при отключённой аккумуляторной батарее при частоте вращения ротора генератора 7500 об/мин и токе нагрузки 5 А не превышает 17 В;

е) Диапазон рабочих температур регулятора -40…+120 С;

ж) Соблюдение требований ГОСТ Р 52230-2004.

1.5 Описание элементов, входящих в состав ЭМС

1.5.1 Генераторная установка

Генераторная установка (ГУ) состоит из ДВС и генератора.

Двигатель внутреннего сгорания (ДВС) – привод генератора, вырабатывает механическую энергию вращения вала. Частота вращения может быть переменной, в данной системе она никак не стабилизируется.

Читать еще:  Нет разъема для регулировки фар

Генератор с электромагнитным возбуждение от регулятора напряжения на выходе даёт переменное электрическое напряжение, зависящее от частоты вращения вала двигателя и тока в обмотке возбуждения. Конструкция генератора представлена на рис.2.

Рис. 2. Конструкция генератора.

Принцип действия генератора : обмотка возбуждения, создаёт постоянный однонаправленный магнитный поток, изменяющий свою величину по мере необходимости. Благодаря когтеобразной (клювообразной) конструкции ротора, на нём возникает неподвижное магнитное поле переменной полярности (см. рис. 1). Когда ДВС приводит во вращение ротор генератора, магнитное поле начинает вращаться относительно неподвижной обмотки статора и наводить в ней переменную ЭДС ( ). Если на статоре уложена симметричная трёхфазная обмотка (магнитные оси фаз сдвинуты в пространстве на 120 электрических градусов, а электрические сопротивления и числа витков фаз одинаковы), то в этой обмотке индуцируется симметричная система ЭДС. Если к трёхфазной обмотке якоря подключить симметричное внешнее сопротивление, то по этой обмотке будет протекать симметричная система токов.

– внешняя характеристика n , I ОВ = c onst :

Уменьшение напряжения U генератора с ростом нагрузки вызвано размагничивающим действием реакции якоря и возрастанием падения напряжения в фазах обмотки якоря.

– скоростная характеристика I Н , I ОВ = const :

Достоинства такого генератора :

– высокая удельная мощность;

– простота технического обслуживания;

– малый уровень шума;

– наличие щёточного узла;

– невозможно самовозбуждение, необходим первичный источник напря-жения (АКБ).

1.5.2 Выпрямитель

В данной ЭМС используется трёхфазный мостовой выпрямитель, так как именно такая конструкция позволяет обеспечить минимальный уровень пульсаций выходного напряжения. Схема реализуется на диодах.

Назначение выпрямителя – преобразовать трёхфазное переменное напряжение в постоянное. В современных генераторах уже имеется встроенный выпрямитель.

Схема выпрямителя представлена на рис. 3.

Рассмотрим работу схемы рис. 4 на активную нагрузку. С момента времени  1 ток проводят диоды VD 1 и VD 6 , а остальные диоды находятся в непроводящем состоянии. Тогда к нагрузке приложено линейное напряжение u ab , и выпрямленный ток I d протекает по контуру: обмотка фазы А – диод VD 1 – нагрузка R d – диод VD 6 – обмотка фазы В . Этот процесс продолжается до момента времени  2 . Начиная с этого момента времени напряжение u bc становится положительным, т.е. прямым для диода VD 2 – он начинает проводить ток, а диод VD 6 закроется. В момент времени  3 в работу вступает диод VD 3 , а диод VD 1 закрывается, т.к. напряжение фазы В становится выше напряжения фазы А .

Далее через интервалы времени, равные /3, происходят включения следующих пар диодов: VD 2 — VD 4 , VD 3 — VD 5 , VD 5 — VD 1 . Таким образом, длительность прохождения тока через каждый диод составляет 2/3, а остальное время он закрыт.

Поочерёдная работа пар диодов в схеме приводит к появлению на сопротивлении нагрузки R d выпрямленного напряжения, состоящего из частей линейных напряжений, приходящих на вход выпрямителя.

Диаграммы токов и напряжение рассматриваемой трёхфазной мостовой схемы выпрямления приведены на рис. 4.

Рис. 4. Диаграммы напряжений и токов выпрямителя

1.5.3 Регулятор напряжения

В данной системе используется регулятор на основе микроконтроллера, управляющего силовым транзистором по принципу ШИМ. Принципиальная схема управления показана на рис. 5.

Рис. 5. Принципиальная схема управления током обмотки возбуждения.

Как видно из схемы, на вход регулятора подаётся выпрямленное напряжение Ud с блока диодов. Затем снизившись до необходимого уровня на делителе напряжений R 12 — R 14 поступает на вход микроконтроллера DA 2 , который сравнивает его с заданным уровнем. Конденсатор С 7 отвечает за продолжительность периодов ШИМ, а С 8 вкупе с резистором R 16 – за стабильность питания микроконтроллера. Свой сигнал на включение обмотки возбуждения (ОВ) микроконтроллер создаёт путём подачи управляющего тока базы вспомогательного транзистора VT 4 , в следствии чего, потенциал затвора силового транзистора IRF 1 становится меньше потенциала истока, и он открывается. Время открытого состояния IRF 1 зависит от скорости вращения ротора генератора и подключённой нагрузки. Дабы уберечь силовой транзистор в момент закрытия от перенапряжения из-за ЭДС самоиндукции обмотки возбуждения, установлен обратный диод VD 7 .

Глава 2. КОМПЬЮТЕРНАЯ МОДЕЛЬ СХЕМЫ УПРАВЛЕНИЯ ТОКОМ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРА

2.1 Описание компьютерной модели

На рис. 6 изображена модель схемы управления током обмотки возбуждения. Вместо ШИМ контроллера DA2 установлен генератор импульсов V2, который создаёт периодические сигналы на открытие вспомогательного транзистора Q1, вследствие чего открывается силовой транзистор M1, замыкающий вывод обмотки возбуждения L1 на «массу». R3 – имитация сопротивления обмотки возбуждения. V1 – это источник постоянного напряжения 14 В, питающий обмотку возбуждения.

Рис. 6. Модель схемы управления током возбуждения.

Исходя из того, что в обмотка возбуждения имеет индуктивность L=66,2 мГн и активное сопротивление R=1,3 Ом, то постоянная времени переходного процесса Т=L/R=66,2/1,3=50,92 мсек. По правилам ТОЭ переходной процесс считается установившимся, если с момента его начала проходит (5 – 6)Т . В связи с этим убеждением, примерное время окончания переходного процесса 306 мсек, поэтому диаграммы будем строить на отрезке времени от 0 до 0,4 сек. Рассматривать будем 4 главных состояния:

– Частота импульсов ШИМ f=25 Гц, скважность Q=0,25, рис. 7;

– Частота импульсов ШИМ f=25 Гц, скважность Q=1, рис.8;

– Частота импульсов ШИМ f=10 кГц, скважность Q=0,25, рис.9 (а, б);

– Частота импульсов ШИМ f=10 кГц, скважность Q=1, рис. 10 (а, б).

На рис. 7 – 10 изображены следующие осциллограммы сверху – вниз:

– Напряжение генератора импульсов;

– Ток эмиттера вспомогательного транзистора Q1;

– Напряжение исток – сток силового транзистора М1;

– Мгновенное и среднее значение тока в обмотке возбуждения.

2.2 Выбор элементной базы

2.2.1 Выбор вспомогательного транзистора Q1

Для выбора биполярного транзистора необходимо знать его токи протекающие через базу – эмиттер и коллектор – эмиттер, а также выделяемую мощность потерь и предельное напряжение. Рассматривать будем 3 осциллограммы предельных режимов:

– Частота генератора импульсов f =25 Гц, скважность Q =0,25, рис. 11;

– Частота генератора импульсов f =10 кГц, скважность Q =1, рис. 12;

– Частота генератора импульсов f =10 кГц, скважность Q =0,5, рис. 13.

На рис. 11 – 12 изображены следующие осциллограммы сверху – вниз:

– Ток базы вспомогательного транзистора Q1;

– Ток коллектора вспомогательного транзистора Q1;

– Напряжение коллектор — эмиттер вспомогательного транзистора Q1;

– Среднее значение выделяющейся мощности.

Из полученных характеристик подбираем вспомогательный транзистор КТ301Ж. Диаметр транзистора d=5 мм, высота с учётом ножек h=18 мм. Цена транзистора 20 руб.

2.2.2 Выбор силового транзистора M1

Для выбора полевого транзистора необходимо знать его ток, протекающий через сток – исток, а также выделяемую мощность потерь напряжение сток – исток. Рассматривать будем осциллограммы режимов f=25 Гц, Q=0,25 рис. 14 и f=10 кГц, Q=1 рис.15.

На рис. 14 – 15 изображены следующие осциллограммы сверху – вниз:

– Ток сток – исток силового транзистора М1;

– Напряжение сток – исток силового транзистора М1;

– Среднее значение выделяющейся мощности.

По полученным параметрам подбираем транзистор 2N6491 TO-220AB. Размеры с учётом ножек: 10х4,5х17 мм. Цена: 100 руб.

2.2.3 Выбор диода D1

Для выбора диода достаточного проверить, чтобы он выдерживал ток, проходящий через него и чтобы время переориентации неосновных носителей было значительно меньше, чем период коммутаций обмотки возбуждения. Ввиду высокой максимальной частоты коммутаций выбираем диод HFA08TA60C, 2UFAST диода 2×4А 600В TO220AB. Размеры с учётом ножек: 10х4,5х17 мм. Цена: 140 руб.

Читать еще:  Как отрегулировать стояночный тормоз на солярисе

В настоящей работе было произведено моделирование схемы управления током возбуждения автомобильной генераторной установки с когтеобразным ротором. В процессе моделирования были получены данные для выбора элементной базы, наглядные осциллограммы переходных процессов в разных режимах работы установки. Кроме того, была произведена настройка модели таким образом, чтобы она удовлетворяла поставленным требованиям по рабочим частотам и качеству тока возбуждения генератора.

Список использованных источников

Л.Л. Таланов, А.В. Берилов, Д.С. Грузков Электронные преобразовательные устройства. М.: МЭИ, 2010. 184с.

Акимов С.В., Чижков Ю.П. Электрооборудование автомобилей. М.: «За рулём», 2007. 336с.

Розанов Ю.К., Рябчицкий М.В. Силовая электроника. М.: МЭИ, 2007. 632 с.

Тыричев П.А., Лозенко В.К. Учебно-методическое пособие по курсу «Электромеханические системы». М.: МЭИ, 1998. 126 с.

Автоматические регуляторы напряжения AVR

Автоматические регуляторы напряжения AVR
В настоящее время во многих дизель-генераторных установках большой мощности используются синхронные генераторы бесщеточного типа. Технической и конструктивной особенностью таких генераторов является отсутствие коллекторно-щеточного узла, а обмотка возбуждения располагается во вращающемся роторе. Для обеспечения работы генератора нужно, чтобы индуцированный и протекающий по обмотке возбуждения ток имел необходимую амплитуду и полярность.

Чтобы выпрямить наведенное напряжение, обмотка возбуждения выполняется из двух частей, которые соединены через диод, а амплитуда индуцированного ЭДС зависит от взаимодействия магнитных полей основной и дополнительной обмоток статора. Регулируя наведенную ЭДС в обмотке возбуждения, можно гибко управлять работой генератора. Этот принцип лег в основу создания специальных управляющих электронных устройств, которые стали неотъемлемой частью современных синхронных генераторов (СГ).

Чтобы запитать обмотку возбуждения и стабилизировать вырабатываемое генератором напряжение, используются различные способы и устройства, но наибольшее распространение получили микропроцессорные автоматические регуляторы напряжения AVR. Устройство AVR – своеобразное «сердце» системы возбуждения синхронного генератора. Адаптивно регулируя ток, наведенный в обмотку возбуждения, регулятор напряжения осуществляет стабилизацию параметров на выходе СГ.

Таким же способом удается обеспечить защиту от перегрузок, которые очень опасны для всех типов генераторов, а также защиту от критичного снижения частоты. Электронный корректор напряжения запитан от одной из трехфазных обмоток статора, являющего выходом синхронного генератора, параметры которого устройство контролирует. При помощи автоматического регулятора AVR удается управлять работой генераторной станции в переходном и аварийном режиме.

Кроме того, электронный регулятор напряжения AVR способен поддерживать совместную работу нескольких СГ сходной мощности, подключенных параллельно. От настройки и точности регулировки этого устройства зависят параметры работы всей дизель-генераторной станции.

Принцип работы регуляторов AVR

Стабилизация выходного напряжения до заданного номинального значения производится посредством соответствующего увеличения или уменьшения тока в обмотке возбуждения. Таким же образом удается минимизировать колебания напряжения генератора в процессе работы, а также обеспечить быстрое достижение заданных параметров после запуска станции, необходимых для подключения и энергоснабжения потребителей.

Чтобы вовремя распознать опасность и предупредить аварию генератора, устройство контролирует изменения частоты выходного напряжения, и в случае ее критичного снижения может оперативно уменьшить, либо вообще отключить подачу напряжения на обмотку возбуждения. Эти же действия производятся при плановой или аварийной остановке двигателя. Порог частоты, при котором происходит отключение обмотки возбуждения, обычно установлен в заводских настойках на уровне 45 Гц.

Техническая реализация

Внешний вид и схемное решение устройств AVR, выпущенных различными компаниями для совместной работы с определенными моделями генераторов, могут значительно отличаться, но основные принципы их построения одинаковы. На начальном этапе создания подобных приборов типичный регулятор напряжения AVR выполнялся в виде отдельного устройства, помещенного в специальный металлический «шкаф». Сегодня в основном используются автоматические регуляторы напряжения AVR, представляющие собой небольшую плату, которая монтируется в блок возбуждения синхронного генератора.

Режимы работы синхронных генераторов, рабочие характеристики генераторов

Режимы работы синхронных генераторовОсновными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .

Важнейшие рабочие характеристики синхронного генератора следующие:

характеристика холостого хода,

Характеристика холостого хода синхронного генератора

Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:

где с — коэффициент пропорциональности.

Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.

Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.

Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.

На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.

Характеристика холостого хода синхронного генератора

Рис. 1. Характеристика холостого хода синхронного генератора

Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.

Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.

Внешняя характеристика генератора

Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.

Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.

Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.

Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.

Влияние реакции якоря для нагрузок: а - активного

Влияние реакции якоря для нагрузок

Влияние реакции якоря для нагрузок: а - активного, б - индуктивного, в - емкостного характера

Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера

Читать еще:  Маз 4371 регулировка клапанов д245 е4

В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.

Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.

Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.

Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .

Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.

Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.

Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.

На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.

Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.

Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.

На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.

Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.

Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.

Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.

Внешние характеристики генератора переменного тока для различных нагрузок: 1 - активной, 2 - индуктивной, 3 емкостной

Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной

Регулировочная характеристика синхронного генератора

Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .

Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 - активной, 2 - индуктивной, 3 - емкостной

Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной

Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.

Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.

Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector