Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор напряжения на тиристоре своими руками

Регулятор напряжения на тиристоре своими руками

Регулятор напряжения на тиристоре

В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. п. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию — регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно.

Некоторые нюансы выбора

Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.

Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.

Схема регулятора напряжения на тиристоре

Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.

Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.

Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.

Конструктивные особенности

Тиристор — это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.

Он имеет сразу три элемента для вывода тока:

  • катод;
  • анод;
  • управляемый электрод.

Конструктивные особенности тиристора

Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.

Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.

Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.

Области и цели использования

Для начала нужно понять, в каких целях используется такое устройство как тиристорный регулятор мощности. Применяются регуляторы мощности практически во всех строительных и столярных электрических инструментах. Кроме этого, в кухонной технике без них тоже никак. Они позволяют, к примеру, регулировать режимы скорости кухонного комбайна или блендера, скорость нагнетания воздуха феном, а также функционируют для обеспечения выполнения других не менее важных задач. Полупроводниковый элемент позволяет более эффективно регулировать мощность нагревательных приборов, то есть их основной части.

Применение регулятора напряжения на тиристоре

Если использовать тиристоры в схеме с высокоиндуктивной нагрузкой, то они могут просто не закрыться в нужный момент, что приведёт к выходу из строя оборудования. Многие пользователи видели или даже самостоятельно пользовались такими устройствами, как болгарки, шлифовальные машины или дрели. Можно заметить, что главным образом регулировка мощности осуществляется при помощи нажатия кнопки. Эта кнопка и находится в общем блоке с тиристорным регулятором мощности, который изменяет обороты двигателя.

Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.

Принцип действия

Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.

Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.

При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.

Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.

Способы закрывания тиристора

Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги — запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.

Принцип действия регулятора напряжения на тиристоре

Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.

Вторым способом закрытия тиристора является прерывание подачи тока. Это можно сделать, просто замкнув соединение катода анода с помощью обычной проволоки. Проверить можно на схеме с простым светодиодом вместо прибора. Если перемычку из проволоки подсоединить, как указано выше, то всё напряжение пойдёт через проволоку, а уровень тока, которой пойдёт в тиристор, будет нулевым. После того как забрать проволоку обратно, тиристор закроется и прибор выключится. В этом случае прибор — это светодиод, и он погаснет. Если экспериментировать с подобными схемами, то в качестве перемычки можно использовать пинцет.

Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.

Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.

Простой регулятор напряжения

Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.

Способы закрывания тиристора

Для изготовления необходимо подготовить такие элементы:

  • 2 резистора;
  • 1 транзистор;
  • 2 конденсатора;
  • 4 диода.

Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

фазовое регулирование напряжения

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

регулировочная характеристика тиристорного регулятора напряжения

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

схема регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

27 thoughts on “ Тиристорный регулятор напряжения простая схема, принцип работы ”

Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.

  1. admin Автор записи 18.03.2016 в 22:58
Читать еще:  Двс 4g37 регулировка клапанов

На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.

подобные схемы собирал…все работают безупречно, только больше нравится на кт 117

Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?

  1. admin Автор записи 18.03.2016 в 23:31

Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).

Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.

  1. Pavel08.06.2016 в 09:51

На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.

  1. сергей08.07.2017 в 11:01

кратковременно проверку выдерживают без сопротивления

На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.

На выходе переменка,мост выпрямляет только для схемы управления.

Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.

  1. Greg01.04.2016 в 14:42

А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.

  1. Иван13.08.2020 в 11:19

А что мешает поставить тиристор на радиатор через слюдяную прокладку? Так в СССР делали часто. В те времена, когда кулер назывался ещё вентилятором, по русски. Конвенцию в корпусе создать то же не сложно, безо всяких кулеров.

Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.

Подскажите, что за конденсатор С1 -330нФ?

  1. admin Автор записи 12.08.2016 в 10:59

Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.

Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…

  1. Майк18.06.2017 в 21:15

Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.

Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…

Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?

  1. admin Автор записи 08.08.2017 в 23:00

Можно поконкретнее о диодном мосте. Как направлены диоды?

  1. Владимир17.09.2018 в 20:45

плюс на право ,минус на лево ))

График неправильный. При 90 градусах *мощность* будет половина. А напряжение будет в корень из двух меньше исходного. Типа от 220 останется 155, а не 110.

А заменить транзисторы на динистор DB3 (стоит 4 рубля) можно? Дайте схему пожалуйста

…а если его — регулировать обороты вентилятора?, (но там индуктивная нагрузка,…. это вопрос).

ЭТИ. ВСЕ. СХЕМЫ. К. СОЖАЛЕНЬЮ. НЕ. РЕГУЛИРУЮТ. **ОТ. НУЛЯ**. НЕ. ЗНАЮ—ПОЧЕМУ. ОБ. **ЭТОМ—-**НИ—СЛОВА*.

Тиристорные регуляторы напряжения

Тиристорные регуляторы напряженияТиристорные регуляторы напряжения представляют собой устройства, предназначенные для регулирования частоты вращения и момента электродвигателей. Регулирование частоты вращения и момента производится за счет изменения напряжения, подводимого к статору двигателя, и осуществляется изменением угла открытия тиристоров. Такой способ управления электродвигателем получил название фазового управления. Этот способ является разновидностью параметрического (амплитудного) управления.

Тиристорные регуляторы напряжения могут выполняться как с замкнутой, так и с разомкнутой системой регулирования. Регуляторы с разомкнутой системой не обеспечивают удовлетворительного качества процесса регулирования частоты вращения. Основное их назначение— регулирование момента для получения нужного режима работы привода в динамических процессах.

Упрощенная схема тиристорного регулятора напряжения

Упрощенная схема тиристорного регулятора напряжения

В силовую часть однофазного тиристорного регулятора напряжения включены два управляемых тиристора, которые обеспечивают протекание электрического тока на на1рузке в двух направлениях при синусоидальном напряжении на входе.

Тиристорные регуляторы с замкнутой системой регулирования используются, как правило, с отрицательной обратной связью по скорости, что позволяет иметь достаточно жесткие механические характеристики привода в зоне малых частот вращения.

Наиболее эффективно использование тиристорных регуляторов для регулирования частоты вращения и момента асинхронных двигателей с фазным ротором.

Силовые цепи тиристорных регуляторов

На рис. 1, а—д показаны возможные схемы включения выпрямительных элементов регулятора в одной фазе. Наиболее распространенной из них является схема на рис1,а. Она может быть использована при любой схеме соединения обмоток статора. Допустимый ток через нагрузку (действующее значение) в этой схеме в режиме непрерывного тока равен:

где I т — допустимое среднее значение тока через тиристор.

Максимальное прямое и обратное напряжения тиристора

где k зап — коэффициент запаса, выбираемый с учетом возможных коммутационных перенапряжений в схеме; — действующее значение линейного напряжения сети.

Схемы силовых цепей тиристорных регуляторов напряжения

Рис. 1. Схемы силовых цепей тиристорных регуляторов напряжения.

В схеме на рис. 1,б имеется только один тиристор, включенный в диагональ моста из неуправляемых диодов. Соотношение между токами нагрузки и тиристора для этой схемы имеет вид:

Неуправляемые диоды выбираются на ток вдвое меньший, чем для тиристора. Максимальное прямое напряжение на тиристоре

Обратное напряжение на тиристоре близко к нулю.

Схема на рис. 1,б имеет некоторые отличия от схемы на рис. 1,а по построению системы управления. В схеме на рис. 1, а управляющие импульсы на каждый из тиристоров должны следовать с частотой питающей сети. В схеме на рис. 1,б частота импульсов управления вдвое больше.

Схема на рис. 1, в, состоящая из двух тиристоров и двух диодов, по возможности управления, загрузке, по току и максимальному прямому напряжению тиристоров аналогична схеме на рис. 1, а.

Обратное напряжение в этой схеме из-за шунтирующего действия диода близко к нулю.

Схема на рис. 1, г по току и максимальному прямому и обратному напряжению тиристоров аналогична схеме на рис. 1, а. Схема на рис. 1, г отличается от рассмотренных требованиями к системе управления по обеспечению необходимого диапазона изменения угла регулирования тиристоров. Если угол отсчитывать от нуля фазного напряжения, то для схем на рис. 1, а—в справедливо соотношение

где φ — фазовый угол нагрузки.

Для схемы на рис. 1, г аналогичное соотношение приобретает вид:

Необходимость увеличения диапазона изменения угла усложняет систему управления тиристорами. Схема на рис. 1, г может быть применена при включении обмоток статора в звезду без нулевого провода и в треугольник с включением выпрямительных элементов в линейные провода. Область применения указанной схемы ограничена нереверсивными, а также реверсивными электроприводами с контактным реверсом.

Схема на рис. 4-1, д по своим свойствам аналогична схеме на рис. 1, а. Ток симистора здесь равен току нагрузки, а частота импульсов управления равна двойной частоте питающего напряжения. Недостаток схемы на симисторах — значительно меньше, чем у обычных тиристоров, допустимые значения du/dt и di/dt .

Для тиристорных регуляторов наиболее рациональна схема на рис. 1, а с двумя встречно-параллельно включенными тиристорами.

Силовые схемы регуляторов выполняются с встречно-параллельно включенными тиристорами во всех трех фазах (симметричная трехфазная схема), в двух и одной фазах двигателя, как показано на рис. 1, е, ж и з соответственно.

Читать еще:  Pathfinder r51 регулировка фар ксенон

В регуляторах, применяемых в крановых электроприводах, наибольшее распространение получила симметричная схема включения, показанная на рис. 1, е, которая характеризуется наименьшими потерями от высших гармонических токов. Более высокие значения потерь в схемах с четырьмя и двумя тиристорами определяются несимметрией напряжения в фазах двигателя.

Основные технические данные тиристорных регуляторов серии РСТ

Тиристорные регуляторы серии РСТ представляют собой устройства для изменения (по заданному закону) напряжения, подводимого к статору асинхронного двигателя с фазным ротором. Тиристорные регуляторы серии РСТ выполняются по симметричной трехфазной схеме включения (рис. 1, е). Применение регуляторов указанной серии в крановых электроприводах позволяет осуществлять регулирование частоты вращения в диапазоне 10:1 и регулирование момента двигателя в динамических режимах при пуске и торможении.

Тиристорные регуляторы серии РСТ выполняются на длительные токи 100, 160 и 320 А (максимальные токи соответственно 200, 320 и 640 А) и напряжение 220 и 380 В переменного тока. Регулятор представляет собой собранные на общей раме три силовых блока (по числу фаз встречно-параллельно включенных тиристоров), блок датчиков тока и блок автоматики. В силовых блоках используются таблеточные тиристоры с охладителями из тянутого алюминиевого профиля. Охлаждение воздушное — естественное. Блок автоматики — единый для всех исполнений регуляторов.

Тиристорные регуляторы выполнены со степенью защиты IP00 и предназначены для установки на стандартные рамы магнитных контроллеров типа ТТЗ, которые по конструкции аналогичны контроллерам серий ТА и ТСА. Габаритные размеры и масса регуляторов серии РСТ указаны в табл. 1.

Таблица 1 Габаритные размеры и масса регуляторов напряжения серии РСТ

В магнитных контроллерах ТТЗ установлены контакторы направления для реверсирования двигателя, контакторы роторной цепи и другие релейно-контактные элементы электропривода, осуществляющие связь командоконтроллера с тиристорным регулятором. Структура построения системы управления регулятора видна из функциональной схемы электропривода, показанной на рис. 2.

Трехфазный симметричный тиристорный блок Т управляется системой фазового управления СФУ. С помощью командоконтроллера КК в регуляторе производится изменение задания скорости БЗС, Через блок БЗС в функции времени осуществляется управление контактором ускорения КУ2 в цепи ротора. Разность сигналов задания и тахогенератора ТГ усиливается усилителями У1 и УЗ. К выходу усилителя УЗ подключено логическое релейное устройство, имеющее два устойчивых состояния: одно соответствует включению контактора направления вперед KB, второе — включению контактора направления назад КН.

Одновременно с изменением состояния логического устройства реверсируется сигнал в цепи управления РУ. Сигнал с согласующего усилителя У2 суммируется с сигналом задержанной обратной связи по току статора двигателя, который поступает с блока токоограничения ТО и подается на вход СФУ.

На блок логики БЛ воздействует также сигнал с блока датчиков тока ДТ и блока наличия тока НТ, запрещающий переключение контакторов направления под током. Блоком БЛ осуществляется также нелинейная коррекция системы стабилизации частоты вращения для обеспечения устойчивости работы привода. Регуляторы могут быть использованы в электроприводах механизмов подъема и передвижения.

Регуляторы серии РСТ выполнены с системой ограничения тока. Уровень токоограничения для защиты тиристоров от перегрузок и для ограничения момента двигателя в динамических режимах плавно изменяется от 0,65 до 1,5 номинального тока регулятора, уровень токоограничения для максимально-токовой защиты— от 0,9 до. 2,0 номинального тока регулятора. Широкий диапазон изменения уставок защиты обеспечивает работу регулятора одного типоразмера с двигателями, отличающимися по мощности примерно в 2 раза.

Функциональная схема электропривода с тиристорным регулятором типа РСТ

Рис. 2. Функциональная схема электропривода с тиристорным регулятором типа РСТ: КК — командоконтроллер; ТГ — тахогенератор; КН, KB — контакторы направления; БЗС — блок задания скорости; БЛ — блок логики; У1, У2. УЗ — усилители; СФУ— система фазового управления; ДТ — датчик тока; ИТ — блок наличия тока; ТО — блок токоограничения; МТ — блок защиты; КУ1, КУ2 — контакторы ускорения; КЛ — линейный контактор: Р — рубильник.

Тиристорный регулятор напряжения РСТ

Рис. 3. Тиристорный регулятор напряжения РСТ

Чувствительность системы наличия тока составляет 5—10 А действующего значения тока в фазе. В регуляторе предусмотрены также защиты: нулевая, от коммутационных перенапряжений, от исчезновения тока хотя бы в одной из фаз (блоки ИТ и МТ), от помех радиоприему. Быстродействующими плавкими предохранителями типа ПНБ 5М осуществляется защита от токов короткого замыкания.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Устройство регулятора мощности своими руками

Регулятор мощности 12 вольт своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

Хема регулятора мощности на симисторе

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

 регулятор мощности на тиристоре

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

 регулятор мощности для паяльника своими руками

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Регулятор мощности на симисторе

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

 регулятор напряжения фазовый

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Читать еще:  Как отрегулировать ручной тормоз после замены колодок

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими руками

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими руками

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Регулировка тока одним тиристором схема

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

1. Падение напряжения при максимальном токе анода (VT или Uос).

2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

3. Обратное напряжение (VR(PM) или Uобр).

4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

6. Обратный ток (IR) — ток при определенном обратном напряжении.

7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

8. Постоянное отпирающее напряжение управления (VGT или UУ).

9. Ток управления (IGT).

10. Максимальный ток управления электрода IGM.

11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Ранее ЭлектроВести писали, п очему в современных инверторах используют транзисторы, а не тиристоры.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector