Mazda4you.ru

Мазда №4
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка зарядного тока конденсатором

Регулировка зарядного тока конденсатором

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности, режима зарядки гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят вполне определенным током, значение которого можно определить по формуле

I = 0,1Q — для кислотных аккумуляторных батарей

I = 0,25Q — для щелочных аккумуляторных батарей.

Здесь Q — паспортная электрическая емкость аккумуляторной батареи в ампер-часах, I — средний зарядный ток в амперах.

Установлено, что зарядка чрезмерно большим током приводит к деформации пластин аккумуляторов и даже разрушению их; зарядка малым током вызывает сульфатацию пластин и снижение емкости аккумуляторной батареи. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени. Степень заряженйости аккумуляторной батареи можно контролировать как по значению плотности электролита и напряжению (для кислотных), так и по напряжению (для щелочных) на полюсных выводах.

Окончание зарядки кислотной аккумуляторной батареи определяют по следующим признакам: напряжение на каждом аккумуляторе батареи достигает 2,5. 2,6 В; плотность электролита достигает определенног.о значения и больше не изменяется; происходит обильное газовыделение — электролит «кипит»; электрическая емкость, сообщенная батарее, на 15. 20% больше емкости, отданной в процессе разрядки.

Кислотные аккумуляторные батареи чувствительны к недозарядкам и перезарядкам, поэтому своевременно надо заканчивать их зарядку.

Щелочные аккумуляторные батареи менее критичны к режиму эксплуатации. Для них окончание зарядки характеризуется установлением на каждом аккумуляторе постоянного,напряжения 1,6. 1,7 В и сообщением батарее 150. 160% емкости, отданной ею в процессе разрядки.

Зарядное устройство обычно состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока обычно используют проволочные реостаты и транзисторные стабилизаторы тока. В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 39. В нем тепловая (активная) мощность выделяется лишь на диодах V1 — V4 выпрямительного моста и в трансформаторе, поэтому нагрев устройства незначителен. Ток зарядкй аккумуляторной батареи GB1 поддерживается на определенном уровне. В процессе зарядки напряжение на батарее увеличивается, а ток, текущий через нее, стремится уменьшиться.

Рис. 39. Упрощенная схема зарядного устройства

Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, напряжение на ней увеличивается, в результате чего ток через батарею GB1 меняется незначительно.

Как показывают расчеты, наибольшее значение тока через аккумуляторную батарею при заданной емкости конденсатора С1 будет при равенстве падений напряжения на этом конденсаторе и первичной обмотке трансформатора. Первичную обмотку рассчитывают на полное напряжение сети — для большей надежности устройства и применения готовых понижающих трансформаторов. Вторичную обмотку рассчитывают на напряжение в полтора раза большее, чем номинальное напряжение нагрузки.

Рис. 40 Схема зарядного устройства

В соответствии с этими рекомендациями и расчетами было собрано устройство, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 Ач причем ток зарядки можно изменять от 1 А до 15 А ступенями через 1 А. Предусмотрена возможность автоматическрго выключения устройства, когда батарея полностью зарядится. Устройство не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Его схема приведена на рис. 40. Магазин конденсаторов состоит из конденсаторов C1—С4, суммарная емкость которых составляет 37,5 мкФ. Тумблерами S2 — S5 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки. Например, для тока зарядки, равного 11 А, необходимо замкнуть контакты тумблеров S2, S3 и S5.

Как работает устройство? Допустим, что к зажимам Х2 и Х3 подключена аккумуляторная батарея и тумблерами S2 — S5 установлен требуемый зарядный ток. В этом случае при нажатии кнопки S1 «Пуск» сработает реле К1, контактами К1.1 оно заблокирует кнопку S1, а контактами К1.2 подключит к заряжаемой батарее цепь автоматического отключения устройства. Контакты K1.2 необходимы для того, чтобы батарея не разряжалась после отключения устройства от сети через диод V6 и резисторы R3—R5. Переменным резистором R4 устанавливают порог срабатывания реле К2 (оно должно срабатывать при напряжении на гнездах Х2 и Х3, равном напряжению полностью заряженной батареи). Когда напряжение батареи достигнет заданного значения, то откроются стабилитрон V10 и транзистор V9. При этом сработает реле К2, которое контактами К2.1 обесточит обмотку реле К1, а оно, отпуская, контактами К1.1 разорвет цепь питания устройства.

При нарушении контакта в цепи нагрузки напряжение на гнездах Х2 и Х3 резко возрастет, отчего также сработает реле К2 и отключит устройство от сети.

Аварийное отключение устройства происходит при любом положении движка переменного резистора R4. Но такие случаи нежелательны, так как в течение времени срабатывания реле К2 и отпускания реле К1 конденсаторы С1—С4 будут находиться под повышенным напряжением. Поэтому зарядное устройство следует включать в сеть лишь после того, как аккумуляторная батарея подсоединена к выходным гнездам. При коротком замыкании в цепи нагрузки ток через гнезда Х2 и Х3 увеличивается незначительно и для устройства это не страшно.

Все постоянные резисторы устройства типа МЛТ-0,5; переменный резистор R4 — СП-1. Вместо транзистора КТ801А (V8) можно применить КТ602, КТ603, П702 с любыми буквенными индексами, вместо транзистора МП38А (V9) — КТ315, КТ312, КТ601—КТ603 с любыми буквами. Измерительные приборы РА1 и PU1 — типа М5-2, рассчитанные соответственно на ток 30 А и напряжение 30 В. Реле К1 типа РС-13 (паспорт РС4.523.029), его контакты К1.1 — параллельно соединенные три группы контактов. Возможно применение реле типа МКУ-48, рассчитанного на переменное напряжение 220 В. В этом случае надобность в диоде V1 и конденсаторе С5 отпадает. Реле К2 типа РЭС-22 (паспорт РФ4.500.129). Диоды Д305 двухполупериодного выпрямителя установлены на радиаторе с поверхностью охлаждения 300 см2; от радиатора они электрически изолированы слюдяными прокладками. Радиатор крепится к шасси из дюралюминия, которое является как бы продолжением радиатора.

Вместо диодов Д305 можно применить Д214, Д242, но в этом случае в три-четыре раза возрастет тепловая мощность, рассеиваемая на них, поэтому размеры радиатора придется увеличить. Конденсаторы C1 — С4 составлены из параллельно соединенных конденсаторов КБГ-МН, МБГЧ, МБГО, МБГП, МБМ соответствующих емкостей. Номинальное напряжение конденсаторов КБГ-МН и МБГЧ, рассчитанных на работу в цепях переменного тока, должно быть не менее 300 В, всех других типов конденсаторов — не менее 600 В. Конденсаторы С5—С7 типа К50-3, ЭГЦ. Тумблеры S2—S5 типа Т1 В2-1-2 или ТП1-2.

Сетевой трансформатор Т1 выполнен на магнитопроводе Ш32Х70. Обмотка I содержит 490 витков провода ПЭВ-1 0,72, обмотка II — 52 витка провода ПЭВ-1 2,46. Вторичную обмотку можно выполнять несколькими проводами меньшего диаметра, сложенными вместе.

В качестве корпуса зарядного устройства можно использовать металлическую коробку размерами 360X220X220 мм, просверлив в ее стенках отверстия для свободной циркуляции воздуха.

Налаживание смонтированного устройства сводится к подбору шунта амперметра РА1 на ток 30 А и подбору емкостей конденсаторов C1 — С4, обеспечивающих требуемые зарядные токи.

Читать еще:  Как отрегулировать клапан потока т 40

При зарядке 12-вольтовых аккумуляторных батарей током 15 А КПД устройства достигает 75%, а температура внутри корпуса после 10 ч непрерывной работы не поднимается выше 40° С.

Такое устройство можно применять и для зарядки аккумуляторных батарей с меньшим напряжением, чем 12 В, например мотоциклетных. Но тогда надписи возле тумблеров S2 — S5 не будут соответствовать фактическим значениям зарядных токов. Зарядный же ток в этом случае не должен превышать 15 А.

Можно ли ввести в устройство измеритель сообщенного аккумуляторной батарее заряда? Можно. Принцип работы такого измерителя может быть основан на зарядке конденсатора током, пропорциональным зарядному току батареи. Счетчик заряда может быть стрелочным или цифровым. При цифровом отсчете несложно обеспечить — автоматическое отключение устройства от сети при сообщении батарее заданного заряда.

Заряд и разряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+ q ), а вторая обкладка получает равный по величине отрицательный заряд ( -q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

Схема заряда конденсатора

P ис. 1 . Схема заряда конденсатора

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.

Графики напряжения и тока при заряде конденсатора

Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ R i , так как вся э. д. с. генератора приложена к сопротивлению R i.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е — U с. Поэтому i зар = (E-Uс)/R i

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Про закон Ома подробнее смотрите здесь: закон Ома для участка цепи

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора R i ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением R i = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: R i = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Графики зарядных токов при разных сопротивлениях

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением R i = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/ Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Графики зарядных токов при разных емкостях

Рис. 3. Графики зарядных токов при разных емкостях

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc / R

Графики напряжения и токов при разряде конденсатора

Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 — при R = 40 Ом, i оразр = Uc о/ R = 100/40 = 2,5 А и кривая 2 — при 20 Ом i оразр = 100/20 = 5 А.

Графики разрядных токов при разных сопротивлениях

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 — для конденсатора емкостью 10 мкф и кривая 2 — для конденсатора емкостью 20 мкф).

Графики разрядных токов при разных емкостях

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Читать еще:  Регулировка карбюратора ява 350 12в

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = С U 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = С U 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Регулировка зарядного тока конденсатором

Любительская Радиоэлектроника

Зарядное устройство для автомобильных аккумуляторов

Известно, что эксплуатация к хранение разряженных аккумуляторов — одна из главных причин сокращения их срока службы. Находящийся на хранении заряженный аккумулятор через некоторое время в результате саморазрядки переходит в разряженное состояние. У новых свинцовых и миниатюрных никель-кадмиевых аккумуляторов саморазрядка равна 0,5. 2% их емкости в сутки, а у бывших в эксплуатации — существенно выше. Для увеличения срока службы аккумуляторов следует их постоянно поддерживать в полностью заряженном состоянии, компенсируя саморазрядку сравнительно небольшим током от маломощного зарядного устройства. Оптимальным принято считать такой режим зарядки, когда, зарядный ток численно равен 0,1 от номинальной емкости аккумулятора. Тем не менее, сейчас некоторые заводы-изготовители аккумуляторов с целью увеличения срока их службы рекомендуют двадцатичасовой режим зарядки током, численно равным 5% номинальной емкости. Иначе говоря, зарядка аккумулятора током, существенно меньшим
оптимального, благоприятно сказывается на сроке его службы, но требует соответственно большего времени.
Таким образом, в ряде практических случаев сложные и тяжелые зарядные устройства, часто снабженные автоматическим управлением, могут быть заменены простыми, малогабаритными и экономичными. Одно из таких устройств описано ниже. Его можно использовать для зарядки автомобильных аккумуляторных батарей емкостью до 100 А-ч, для зарядки в режиме, близком к оптимальному, мотоциклетных батарей, а также (при несложной доработке) в качестве лабораторного блока питания.
Зарядное устройство выполнено на основе транзисторного двухтактного преобразователя напряжения с автотрансформаторной связью и может работать в двух режимах — источника тока и источника напряжения. При выходном токе, меньшем некоторого предельного значения, оно работает как обычно — в режиме источника, напряжения. Если попытаться увеличить ток нагрузки сверх этого значения, выходное напряжение будет резко уменьшаться — устройство перейдет в режим источника тока. Режим источника тока (обладающего большим внутренним сопротивлением) обеспечен включением балластного конденсатора в первичную цепь преобразователя.

Рис.1 . Зарядное устройство для автомобильных аккумуляторов . Принципиальная схема

Схема зарядного устройства представлена на рис.1. Сетевое напряжение через балластный конденсатор С1 поступает на выпрямительный мост VD1. Конденсатор С2 сглаживает пульсации, а стабилитрон VD2 стабилизирует выпрямленное напряжение. Преобразователь напряжения собран на транзисторах VT1, VT2 и трансформаторе Т1. Диодный мост VD3 выпрямляет напряжение, снимаемое со вторичной обмотки трансформатора. Конденсатор С3 — сглаживающий.
Преобразователь работает на частоте 5. 10 кГц. Стабилитрон VD2 одновременно защищает от перегрузки по напряжению транзисторы преобразователя на холостом ходе, а также при замыкании выхода устройства, когда напряжение на выходе моста VD1 повышается. Последнее связано с тем, что при замыкании выходной цепи генерация преобразователя может срываться, при этом ток нагрузки выпрямителя уменьшается, а его выходное напряжение увеличивается. В таких случаях стабилитрон VD2 ограничивает напряжение на выходе моста VD1.
Экспериментально снятая нагрузочная характеристика зарядного устройства изображена на рис.2. При увеличении тока нагрузки до 0,35. 0,4 А выходное напряжение изменяется незначительно, а при дальнейшем увеличении тока резко уменьшается. Если к выходу устройства подключить разряженную батарею аккумуляторов, напряжение на выходе моста VD1 уменьшается, стабилитрон VD2 выходит из режима стабилизации и, поскольку во входной цепи включен конденсатор С1 с большим реактивным сопротивлением, устройство работает в режиме источника тока.
Если зарядный ток уменьшился, то устройство плавно переходит в режим источника напряжения. Это дает возможность использовать зарядное устройство в качестве маломощного лабораторного блока питания. При токе нагрузки менее 0,3 А уровень пульсации на рабочей частоте преобразователя не превышает 16мВ, а выходное сопротивление источника уменьшается до нескольких Ом. Зависимость выходного сопротивления от тока нагрузки показана на рис.2.
Зарядное устройство легко размещается в коробку размерами 155х80х70 мм. Коробку следует изготовлять из изоляционного материала.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К40х25х11 из феррита 1500НМ1. Первичная обмотка содержит 2х160 витков провода ПЭВ-2 0,49, вторичная — 72 витка провода ПЭВ-2 0,8. Обмотки изолированы между собой двумя слоями лакоткани.
Стабилитрон VD2 установлен на теплоотводе с полезной площадью 25 см 2 . Транзисторы преобразователя в дополнительных теплоотводах не нуждаются, так как работают в ключевом режиме. Конденсатор С1 — бумажный, рассчитанный на номинальное напряжение не менее 400 В.
При необходимости использования з арядного устройства для зарядки малогабаритных аккумуляторов емкостью до единиц ампер-часов и регенерации гальванических элементов целесообразно обеспечить регулировку тока зарядки. Для этого вместо одного конденсатора С1 следует предусмотреть набор конденсаторов меньшей емкости, коммутируемых переключателем. С достаточной для практики точностью максимальный ток зарядки — ток замыкания выходной цели — пропорционален емкости балластного конденсатора (при 4 мкФ ток равен 0,46 А).
Если нужно уменьшить выходное напряжение лабораторного источника питания, достаточно стабилитрон VD2 заменить другим, с меньшим напряжением стабилизации.
Налаживать з арядное устройство начинают с проверки правильности монтажа. Затем убеждаются в работоспособности устройства при замыкании выходной цепи. Ток замыкания должен быть не менее 0,45. 0,46 А. В противном случае следует подобрать резисторы Rl, R2 с целью обеспечения надежного насыщения транзисторов VT1, VT2. Больший ток замыкания соответствует меньшему сопротивлению резисторов.

Рис. 2 . Зарядное устройство для автомобильных аккумуляторов . Вольт-амперная диаграмма

Схемы зарядных устройств и выпрямителей для аккумуляторов

Наиболее выгодными и удобными источниками питания карманных приемников являются герметизированные никель-кадмиевые аккумуляторы, которые отличаются высокой удельной емкостью, большой механической прочностью, малым внутренним сопротивлением и, самое главное, возможностью многократного их применения после соответствующей зарядки. Они выдерживают большое число циклов заряд-разрядов, что обеспечивает большой срок службы.

Заряжать аккумуляторы можно от любого источника постоянного тока, обеспечивающего нормальный зарядный ток. Чтобы не испортить аккумуляторы при заряде, необходимо строго соблюдать полярность включения и не превышать зарядный ток, указанный в таблице, в противном случае отдельные аккумуляторные элементы разрушатся (могут взорваться). Не рекомендуется также разряжать аккумулятор до напряжения ниже 1 в (на элемент).

типы аккумуляторов

Схема простого зарядного устройства

Простейшая схема выпрямительного устройства для зарядки аккумуляторной батареи от сети переменного тока приведена на рис. 1. Как видно из рисунка, в качестве вентиля использован диод Д1, который пропускает ток только в прямом направлении.

Читать еще:  Стенд для регулировки и проверки инжектора

При подключении к выпрямителю переменного напряжения через диод, а следовательно, и через аккумулятор Ак будут протекать отдельные импульсы электрического тока одного направления. Такой ток называется пульсирующим.

Схема бестрансформаторного зарядного устройства для аккумуляторов 7Д-0,1

Рис. 1. Схема бестрансформаторного зарядного устройства для аккумуляторов 7Д-0,1.

Резисторы R1, R2 служат для ограничения величины зарядного тока до требуемой величины. На рис. 1 приведены сопротивления резисторов для зарядки аккумуляторов типа 7Д-0,1.

Переключатель В1 позволяет включать выпрямитель для работы от сети переменного тока напряжением 127 или 220 в. Выпрямители, предназначенные для зарядки аккумуляторов, называют зарядными устройствами (ЗУ).

Недостатком приведенной схемы является наличие гасящих резисторов, на которых бесполезно рассеивается мощность. Нагрев резисторов приводит к повышению температуры корпуса, в котором обычно монтируется ЗУ, а это резко снижает величину допустимого обратного напряжения диода и может привести к выходу его из строя.

Зарядное устройство с конденсатором

Наибольшее распространение находят зарядные устройства, в которых в качестве ограничительного сопротивления используется безваттное сопротивление — конденсатор постоянной емкости (рис 2).

Работает такое ЗУ следующим образом. Во время одного полупериода переменного напряжения, когда на гнезде 1 питающей сети получается положительная полярность, а на гнезде 2 отрицательная, через диод Д1 проходит ток, заряжающий конденсатор С1.

Схема бестрансформаторного зарядного устройства с конденсатором для аккумуляторов

Рис. 2. Схема бестрансформаторного зарядного устройства с конденсатором для аккумуляторов.

При этом правая обкладка конденсатора С1 оказывается заряженной положительно. В следующий полупериод, когда полярность напряжения на гнездах 1— 2 изменится, происходит перезарядка конденсатора С1 и через диод Д2 и аккумулятор пройдет импульс тока, величина которого зависит (при данных напряжениях сети и аккумулятора) от емкости конденсатора С1.

Таким образом, изменяя емкость этого конденсатора, можно изменять величину зарядного тока. Рабочее напряжение конденсатора С1 должно быть не менее 350 и 600 в для сети 127 и 220 в соответственно.

Конденсатор С1 должен быть обязательно бумажным. Необходимую емкость обычно получают путем параллельного соединения нескольких конденсаторов с различными номиналами.

Зарядное устройство с диодным мостом

На рис. 3 представлен другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0.1 в приемнике «Селга». В этом устройстве выпрямительная часть собрана по обычной мостовой схеме па диодах Д1— Д4.

Для получения необходимого зарядного тока используются конденсаторы С1, С2 типа МБМ, сравнительно небольшой емкости, что является преимуществом этой схемы по сравнению с предыдущей.

Другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0,1

Рис. 3. Другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0,1.

При напряжении сети 127 в, переключателем В1 оба конденсатора соединяют параллельно. Резистор R1 ограничивает максимальную величину импульса тока.

Резистор R2 служит для разрядки конденсаторов после отключения ЗУ от сети. (R2 — 470 ком).

Выпрямитель для зарядки аккумуляторов

Для зарядки аккумуляторов напряжением 2,5 или 3,75 а можно воспользоваться схемой ЗУ, приведенной на рис. 4. Подобным устройством снабжены приемники «Космос».

По этой же схеме смонтированы и ЗУ приемников «Рубин», «Сюрприз» и др. Сопротивление резисторов R3, R2 выбирают равными: 620 ом — для зарядки аккумуляторов типа 2Д— 0,1. 3 ком — для аккумуляторов типа 2Д— 0,06 и 1,6 ком — для аккумуляторов типа ЗД— 0,1.

Схема для зарядки аккумуляторов напряжением 2,5 или 3,75

Рис. 4. Схема для зарядки аккумуляторов напряжением 2,5 или 3,75.

Выпрямитель собран по двухполупериодной схеме на диодах Д1, Д2 Функции гасящих резисторов выполняют конденсаторы С1, С2, соединенные последовательно.

При работе ЗУ от сети напряжением 127 а, конденсатор С1 замыкается переключателем В1. Такая схема переключения позволяет использовать конденсаторы с меньшим рабочим напряжением.

Резисторы R2, R3 и R1 имеют то же назначение, что и соответствующие резисторы R1 и R2 в схеме рис. 3 .

Зарядно-питающий блок

На рис. 5 приведена схема зарядно-питающего блока, основной частью которого является выпрямитель со стабилизацией выходного напряжения. С помощью ручного регулятора выходное напряжение может быть установлено в пределах 1— 14 а при токе нагрузки до 300 ма.

Выпрямитель собран по двухполупериодной мостовой схеме на диодах Д1— Д4. Выпрямленное напряжение поступает на вход транзисторного стабилизатора, смонтированного на составном транзисторе Т1.Т2 и стабилитроне Д5, создающем опорное напряжение на базе транзистора Т1 Напряжение на выходе такого стабилизатора (гнездах Гн1, Гн2) близко к опорному, поэтому если его изменять с помощью потенциометра R1 будет изменяться и напряжение на нагрузке.

Подобная схема стабилизатора позволяет получить стабилизированное напряжение с малым внутренним сопротивлением источника питания и с малым коэффициентом пульсаций, что обеспечивает высокое качество звучания транзисторного приемника при питании его от сети.

При использовании блока для зарядки аккумуляторов переключатель В1 устанавливается в положение 1. Аккумулятор присоединяют к гнездам Гн3, Гн4. Сопротивление резистора R4 зависит от типа аккумулятора, используемого в приемнике, и подбирается опытным путем.

Чтобы ослабить помехи, проникающие из сети в цепи приемника, между обмотками / и // трансформатора Тр1 имеется электростатический экран, а каждая из секций Іа, 1б заблокирована конденсаторами С1, С2.

Трансформатор Тр1 выполнен на сердечнике УШ16, толщина набора 32 мм. Обмотка /а содержит 1270 витков провода ПЭВ-1 0,15; обмотка 1б — 930 витков провода ПЭВ-1, 0,12.

Электростатический экран имеет один слой провода ПЭВ-1 0,12. Обмотка П содержит 160—170 витков провода ПЭВ-1 0,47. В качестве изоляционных прокладок между обмотками и электростатическим экраном используют тонкую вощенную бумагу (1— 2 слоя).

Практически при изготовлении такого блока можно использовать любой трансформатор питания, у которого оставляют только сетевую обмотку, а число витков обмотки накала увеличивают в 2,5— 3 раза.

В блоке можно использовать транзисторы П13—П16, МП39—МП42, МП104— МП 106 (Т1), П201—П203, П213, П214 (Т2), диоды Д7, Д226, конденсаторы К50— 6, резисторы МЛТ, СП и др.

Схема зарядно-питающего блока

Рис. 5. Схема зарядно-питающего блока.

Конструктивное оформление устройства может быть самым различным. Если все детали исправны и при монтаже не допущено ошибок, оно сразу начинает работать. После включения в сеть, переключатель В1 устанавливают в положение 2 и измеряют напряжение на гнездах Гн1, Гн2.

При вращении ручки потенциометра R1 по часовой стрелке выходное напряжение должно плавно изменяться от нуля до значения, соответствующего напряжению стабилизации стабилитрона.

Затем включают миллиамперметр последовательно со стабилитроном (в точку «а») и подбирают сопротивление резистора R2 так, чтобы при отсутствии нагрузки ток через стабилитрон был равен .15— 20 ма. На этом налаживание заканчивается.

Для удобства работы шкалу потенциометра R1 желательно проградуировать в вольтах.

Подобный зарядно-питающий блок представляет интерес для радиолюбителей, занимающихся конструированием различной транзисторной аппаратуры В том случае, если от блока требуется получить фиксированное напряжение 6, 9, 12 а, нужно потенциометр R1 из схемы исключить и базу транзистора Т1 присоединить к верхнему (по схеме) концу резистора R2.

Для получения напряжения порядка 6 а надо использовать стабилитрон типа КС156А, 9 в — Д809, 12 а— Д813. После установки нужного стабилитрона, резистором R2 устанавливают необходимый ток стабилизации: порядка 20— 25 ма для стабилитрона Д809, 14— 16 ма для стабилитрона Д813 н 45— 50 ма для стабилитрона КС156А.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector